Seminario Local de Sistemas Dinámicos

El Seminario Local de Sistemas Dinámicos, se realiza todos los martes a las 10:00 am.:
2017-01-09
16:30 Hrs.hrs.
Ian Morris, Surrey.
Matrix Thermodinamic Formalism
Sala 1 de la Facultad de Matemáticas de la Universidad Católica
Abstract:

Equilibrium states of real-valued potentials over subshifts of finite type have been investigated since the 1970s and their basic ergodic properties have long been well understood: they are exponentially mixing, Bernoulli and have positive entropy. Much more recently a theory has emerged of equilibrium states associated to matrix-valued potentials. In this talk I will describe how the ergodic properties of a matrix equilibrium state depend on the semigroup generated by the underlying matrices. At the end I will discuss some consequences for self-affine fractals in the plane.

2016-11-08
10:00hrs.
Rafael Potrie. Universidad de la Republica, Montevideo
El Lema de Morse en el Plano Hiperbólico
Sala 2
Abstract:
Voy a contar la relación entre el plano hiperbólico y las matrices 2x2 de determinante uno y utilizando un resultado de J-C. Yoccoz contar una prueba del Lema de Morse para el disco hiperbólico que dice que toda quasi-geodésica (a ser definido) en el plano hiperbólico puede ser aproximada uniformemente por una geodésica. Esto involucra traducir el problema a una pregunta básica de productos de matrices 2x2. 
2016-10-25
10:00hrs.
Italo Cipriano. .
Introduction To Telescoping Product Measures (Part 2)
Sala 2
Abstract:
In the last 4 years an important extension of the classic theory of multifractal analysis has been achieved after the introduction of a purely probabilistic machinery called telescoping product measure by Peres and Solomyak. In some sense, that it is still not completely understood, telescoping product measures play the role of the Gibbs measure in classic thermodynamics formalisms. An extension of the spectral theory of the Ruelle-Perron-Frobenius operator has also been initiated and a future extension of the theory of mutiple-ergodic averages in this direction looks now plausible.

In this talk I will focus on the purely probabilistic aspects of telescoping product measures. I will start with a motivation and I will end by exhibiting an original and more general proof of the essential probabilistic result used by Peres and Solomyak. No background will be needed.
2016-10-18
10:00hrs.
Jana Rodriguez Hertz. Universidad de la Republica, Montevideo
Ergodicity And Partial Hyperbolicity
Sala 2, Fac. de Matematicas.
Abstract:
In this talk we will recall different mixing properties and we'll see why they are relevant in some real-life applications. In particular, we will focus on ergodicity. We will then show some relations of partial hyperbolicity and ergodicity and describe some open problems. 
2016-10-11
10:00hrs.
Italo Cipriano. PUC
Introduction To Telescoping Product Measures
sala 2
Abstract:
In the last 4 years an important extension of the classic theory of multifractal analysis has been achieved after the introduction of a purely probabilistic machinery called telescoping product measure by Peres and Solomyak. In some sense, that it is still not completely understood, telescoping product measures play the role of the Gibbs measure in classic thermodynamics formalisms. An extension of the spectral theory of the Ruelle-Perron-Frobenius operator has also been initiated and a future extension of the theory of mutiple-ergodic averages in this direction looks now plausible.

In this talk I will focus on the purely probabilistic aspects of telescoping product measures. I will start with a motivation and I will end by exhibiting an original and more general proof of the essential probabilistic result used by Peres and Solomyak. No background will be needed.
2016-10-04
10:00hrs.
Ryo Moore. Puc-Chile
A Summary Of Wiener-Wintner, Multiple Recurrence, And Return Times Averages, And Their Recent Developments, Part Iv
Sala 2, Fac. de Matemáticas.
Abstract:
In this series of talks, we will discuss a variety of extensions of Birkhoff's pointwise ergodic theorem, namely, Wiener-Wintner, multiple recurrence, and the return times averages. We will survey the backgrounds and machinery associated to showing the convergences of these averages while discussing recent developments in these fields, particularly the ones obtained in the speaker's joint work with I. Assani, and partly with D. Duncan. The fourth (and the final) talk will focus on weighted ergodic averages and the return times theorem.
2016-09-27
10:00hrs.
Ryo Moore. PUC
A Summary Of Wiener-Wintner, Multiple Recurrence, And Return Times Averages, And Their Recent Developments, Part III
Sala 2, Fac. de Matemáticas
Abstract:
In this series of talks, we will discuss a variety of extensions of Birkhoff's pointwise ergodic theorem, namely, Wiener-Wintner, multiple recurrence, and the return times averages. We will survey the backgrounds and machinery associated to showing the convergences of these averages while discussing recent developments in these fields, particularly the ones obtained in the speaker's joint work with I. Assani, and partly with D. Duncan. The third talk will focus on the the double recurrence Wiener-Wintner theorem and its extensions, as well as the survey of the return times theorem.
2016-09-13
10:00hrs.
Ryo Moore. PUC
A Summary Of Wiener-Wintner, Multiple Recurrence, And Return Times Averages, And Their Recent Developments. Part 2.
Sala 2, Facultad de Matemáticas
Abstract:
In this series of talks, we will discuss a variety of extensions of Birkhoff's pointwise ergodic theorem, namely, Wiener-Wintner, multiple recurrence, and the return times averages. We will survey the backgrounds and machinery associated to showing the convergences of these averages while discussing recent developments in these fields, particularly the ones obtained in the speaker's joint work with I. Assani, and partly with D. Duncan. The second talk will focus on the history of the multiple recurrence theorem, and Wiener-Wintner extensions of Bourgain's double recurrence averages.
2016-09-06
10:00hrs.
Ryo Moore. Pontificia Universidad Católica de Chile
A Summary Of Wiener-Wintner, Multiple Recurrence, And Return Times Averages, And Their Recent Developments
Sala 2 (Víctor Ochsenius) Facultad de Matemáticas UC.
Abstract:
In this series of talks, we will discuss a variety of extensions of Birkhoff's pointwise ergodic theorem, namely, Wiener-Wintner, multiple recurrence, and the return times averages. We will survey the backgrounds and machinery associated to showing the convergences of these averages while discussing recent developments in these fields, particularly the ones obtained in the speaker's joint work with I. Assani, and partly with D. Duncan. The first talk will focus on the Wiener-Wintner ergodic theorem and its uniform counterpart.