Seminario de Teoría de Números

El Seminario de Teoría de Números en la UC está dirigido a estudiantes de pregrado y postgrado que estén interesados en el área. El objetivo será presentar variados temas dentro de la teoría de números de una manera autocontenida, para así mostrar a los estudiantes los temas que actualmente son de interés para los teoristas de números. Los expositores serán voluntarios dentro de los participantes del seminario.


2020-11-20
14:00hrs.
Héctor Pastén. Pontificia Universidad Católica de Chile
Una introducción a las dinámicas aritméticas
Zoom (pedir link a Héctor Pastén)
Abstract:
Una función racional define una dinámica en la esfera de Riemann por iteración. Si esta función tiene coeficientes racionales, entonces obtenemos una dinámica en los puntos racionales. En esta charla veremos una introducción a problemas aritméticos relacionados a dicha dinámica y daremos una idea de los métodos utilizados en su estudio.
2020-11-06
14:00hrs.
Matías Bruna. Pontificia Universidad Católica de Chile
El teorema de Mason y su relación con la conjetura abc
Zoom (pedir link a Héctor Pastén)
Abstract:
Comenzaremos presentando la conjetura abc y cuáles serían algunas de sus consecuencias (en caso de ser cierta). Luego demostraremos el teorema de Mason, el cual es el análogo de la conjetura abc para polinomios en k[t], demostraremos algunas de sus consecuencias, y discutiremos cómo éste hace que no sea "tan fácil" refutar la abc.
2020-10-30
14:00hrs.
Jerson Caro. Pontificia Universidad Católica de Chile
Una cota superior para el rango análitico de una curva elíptica
Zoom (pedir link a Héctor Pastén)
Abstract:
Asociada a una curva curva elíptica tenemos una L-función L(E,s). Una conjetura famosa (Birch-Swinnerton-Dyer conjecture) sobre curvas elípticas definidas sobre los racionales, establece que el orden del cero en s=1 de L(E,s) (a lo que llamamos el rango analítico de la curva elíptica E) es igual al rango (como grupo abeliano) de los puntos  racionales de la curva E. Es entonces importante tener control del rango análitico en términos de invariantes de la curva elíptica que sean calculables, al menos en ciertos casos.
 
Nuestro objetivo es demostrar que dado un morfismo f de X a la curva elíptica E, donde X es una curva de un tipo específico, el cuál definiremos también en la charla, podemos acotar el rango analítico de E por el cardinal de un conjunto de puntos especiales de E asociados a f.
2020-10-23
14:00hrs.
Javier Reyes. Pontificia Universidad Católica de Chile
Ecuación de Markov
Zoom (pedir link a Héctor Pastén)
Abstract:
Se introducirá la ecuación de Markov y la estructura de sus soluciones. También se presentará la conjetura de unicidad de números de Markov y una demostración para un caso particular.
2020-10-16
14:00hrs.
Patricio Pérez. Pontificia Universidad Católica de Chile
Recurrencias lineales y el Teorema de Skolem-Mahler-Lech
Zoom (pedir link a Héctor Pastén)
Abstract:
El Teorema de Skolem-Mahler-Lech postula que dada una sucesión determinada por una recurrencia lineal, el conjunto de índices donde esta sucesión es nula puede descomponerse en la unión de un conjunto finito y finitas progresiones aritméticas. En esta charla visitaremos una demostración de este resultado basada en técnicas del análisis p-ádico, por ejemplo estudiando qué es y qué propiedades tiene una función analítica en este contexto.
2020-10-09
14:00hrs.
Héctor Pastén. Pontifica Universidad Católica de Chile
Progresiones aritméticas de cuadrados
Zoom (pedir link a Héctor Pastén)
Abstract:
Los números 1,25,49 forman una progresión aritmética de cuadrados enteros. Podríamos amplificar por un factor cuadrado para obtener más ejemplos, pero ¿hay otros ejemplos realmente distintos? ¿hay infinitos? ¿cuáles son todos? ¿hay progresiones aritméticas de 4 cuadrados enteros? ¿y qué pasa con progresiones aritméticas de cubos? Todas estas preguntas serán respondidas con un método cuyos orígenes se remontan al menos a los trabajos de Diofanto hace unos 1800 años.
2020-10-02
14:00hrs.
Sebastián Rahausen. Pontificia Universidad Católica de Chile
Un método para la conjetura de Manin-Mumford
Zoom (pedir link a Héctor Pastén)
Abstract:
La conjetura de Manin-Mumford afirma que la intersección de una curva de género mayor o igual a 2 con el subgrupo de torsión de su Jacobiano es un conjunto finito. Surgió en los 1960s. Se han obtenido varias demostraciones de ella, la primera en 1983 por Raynaud. En esta charla veremos una demostración de esta conjetura obtenida por Pila-Zannier en 2008. Esta se basa en comparar cotas superiores para la cantidad de puntos racionales en superficies analíticas reales trascendentales (Bombieri-Pila-Wilkie) y cotas inferiores para grados de puntos de torsión (Masser).
2020-09-11
14:00hrs.
Jerson Caro. Pontificia Universidad Católica de Chile
Puntos de Heegner y Derivadas de Funciones L: Alturas Arquimedeanas Para X_0(N) (Parte Iii)
Zoom (pedir link a Héctor Pastén)
2020-09-04
14:00hrs.
Matías Alvarado. Pontificia Universidad Católica de Chile
Puntos de Heegner y Derivadas de Funciones L: Alturas Arquimedeanas Para X_0(N) (Parte Ii)
Zoom (pedir link a Héctor Pastén)
2020-08-28
14:00hrs.
Matías Alvarado. Pontificia Universidad Católica de Chile
Puntos de Heegner y Derivadas de Funciones L: Alturas Arquimedeanas Para X_0(N) (Parte I)
Zoom (pedir link a Héctor Pastén)
2020-08-21
14:00hrs.
Héctor Pastén. Pontificia Universidad Católica de Chile
Puntos de Heegner y Derivadas de Funciones L: Introducción a la Fórmula de Gross-Zagier
Zoom (pedir link a Héctor Pastén)
2020-08-14
14:00hrs.
Héctor Pastén. Pontificia Universidad Católica de Chile
Los puntos racionales no respetan la dimensión
Zoom (pedir link a Héctor Pastén)
Abstract:
Voy a dar un ejemplo de un morfismo de una superficie a una curva donde la superficie tiene un denso de puntos racionales, pero el morfismo es inyectivo en puntos racionales. Esto responde una versión de un problema planteado por H. Friedman y D. Zagier.
2020-07-24
10:00hrs.
Natalia García. Pontificia Universidad Católica de Chile
Modularidad de Representaciones de Galois: Modularidad de Curvas Elípticas Semiestables
Zoom (pedir link a Héctor Pastén)
2020-07-23
10:00hrs.
Héctor Pastén. Pontificia Universidad Católica de Chile
Modularidad de Representaciones de Galois: Teorema de Levantamiento Modular
Zoom (pedir link a Héctor Pastén)
2020-07-14
15:30hrs.
Patricio Pérez. Pontificia Universidad Católica de Chile
Modularidad de Representaciones de Galois: Criterios Numéricos de Isomorfismo
Zoom (pedir link a Héctor Pastén)
2020-07-10
14:00hrs.
Matías Alvarado. Pontificia Universidad Católica de Chile
Modularidad de Representaciones de Galois: Álgebras de Hecke
Zoom (pedir link a Héctor Pastén)
2020-07-03
14:00hrs.
Jerson Caro. Pontificia Universidad Católica de Chile
Modularidad de Representaciones de Galois: Desde Representaciones de Galois a Formas Modulares
Zoom (pedir link a Héctor Pastén)
2020-06-30
15:30hrs.
Héctor Pastén. Pontificia Universidad Católica de Chile
Modularidad de Representaciones de Galois: Representaciones de Galois Asociadas a Formas Modulares
Zoom (pedir link a Héctor Pastén)
2020-06-26
14:00hrs.
Héctor Pastén. Pontificia Universidad Católica de Chile
Modularidad de Representaciones de Galois: Más Sobre Anillos de Deformación de Representaciones
Zoom (pedir link a Héctor Pastén)
2020-06-23
15:30hrs.
Matías Alvarado. Pontificia Universidad Católica de Chile
Modularidad de Representaciones de Galois: Anillos de Deformación de Representaciones Para Primos de Taylor-Wiles
Zoom (pedir link a Héctor Pastén)