Profesor Titular

Departamento de Matemáticas

Facultad de Matemáticas

Pontificia Universidad Católica de Chile

Vicuña Mackenna 4860, Macul

Santiago 7820436, Chile

Phone: +56-2-23545466

Dept. Fax: +56-2-25525916

E-Mail : aramirez at mat dot puc dot cl

- Velocity estimates for symmetric random walks at low ballistic
disorder. C. Laurent, A.F. Ramírez, C. Sabot and S. Saglietti. [ps]
[pdf]

- Asymptotic direction for random walks in mixing random
environments. E. Guerra and A.F. Ramírez. [ps] [pdf]

- Exponential ergodicity and Rayleigh-Schrödinger series for infinite dimensional diffusions. A.F. Ramírez. [ps] [pdf]
- Asymptotic expansion of the invariant measure for ballistic random walks in random environment in the low disorder regime. D. Campos and A.F. Ramírez, to appear in Ann. Probab. [ps] [pdf]
- Quenched invariance principle for random walk in time-dependent balanced random environment. J.-D. Deuschel, X. Guo and A.F. Ramírez, to appear in Ann. Inst. H. Poincaré Probab. Statist. [ps] [pdf]
- Random walk in the low disorder ballistic regime. A.F. Ramírez, to appear in the proceedings of the XVIII International Congress on Mathematical Physics. [ps] [pdf]
- Fluctuations of the front in a one-dimensional model for the
spread of an infection. J. Bérard and A.F. Ramírez, Ann. Probab.
**44**(5), 2770-2816 (2016). [ps] [pdf] - Sharp ellipticity conditions for ballistic behavior of random
walks in random environment. E. Bouchet, A.F. Ramírez and C.
Sabot, Bernoulli
**22**, 969-994 (2016). [ps] [pdf] - Almost exponential decay for the exit probability from slabs
for RWRE, E. Guerra and A.F. Ramírez, Electron. J. Probab.
**20**1-17 (2015) [ps] [pdf] - Selected topics in random walks in random environments. A.
Drewitz and A.F. Ramírez,
Topics in percolative and disordered systems,
- Ellipticity criteria for ballistic behavior of random walks in
random environment. D. Campos and A.F. Ramírez, Probab. Theory
Related Fields
**160**, 189-251 (2014). [ps] [pdf] - Effective polynomial ballisticity condition for random walk
in random environment. N. Berger, A. Drewitz and A.F. Ramírez,
Comm. Pure Appl. Math.
**67**, 1947-1973 (2014). [ps] [pdf] - Last passage percolation and travelling fronts. F. Comets, J. Quastel and A.F. Ramírez, J. Stat. Phys. 152, 419-451 (2013). [ps] [pdf]
- Level 1 quenched large deviation principle for random walk in dynamic random environment. D. Campos, A. Drewitz, A.F. Ramírez, F. Rassoul-Agha and T. Seppalainen, Bull. Inst. Math. Acad. Sin. (N.S.) in honor of the 70th birthday of S.R.S. Varadhan, 8(1), 1-29 (2013). [ps] [pdf]
- On a general many-dimensional excited random walk. M. Menshikov, S. Popov, A.F. Ramírez and M. Vachkovskaia, Ann. Probab. 40(5), 2106-2130 (2012). [ps] [pdf]
- Quenched exit estimates and ballisticity conditions for higher dimensional random walk in random environment. A. Drewitz and A.F. Ramírez, Ann. Probab. 40(2), 459-534 (2012). [ps] [pdf]
- Asymptotic Shape and Propagation of Fronts for Growth Models in Dynamic Random Environment. H. Kesten, A.F. Ramírez and V. Sidoravicius, Probability in Complex Physical Systems-In honour of Erwin Bolthausen and Jürgen Gärtner, Springer Proceedings in Mathematics 11, 195-224 (2012). [ps] [pdf]
- Survival probability of a random walk among a Poisson system of moving traps. A. Drewitz, J. Gärtner, A.F. Ramírez and R. Sun, Probability in Complex Physical Systems-In honour of Erwin Bolthausen and Jürgen Gärtner, Springer Proceedings in Mathematics 11, 119-158 (2012). [ps] [pdf]
- Ballisticity conditions for random walk in random environment. A. Drewitz and A.F. Ramírez, Probab. Theory Related Fields 150, 61-75 (2011). [ps] [pdf]
- Large deviations of the front in a one dimensional model of X+Y-->2X. J. Bérard and A.F. Ramírez, Ann. Probab. 38(3), 955-1018 (2010). [ps] [pdf]
- Asymptotic directions in random walk in random environment revisited. A. Drewitz and A.F.Ramírez, Braz. J. Probab. 24, 212-225 (2010). [ps] [pdf]
- Fluctuations of the front in a one dimensional model of X+Y-->2X. F. Comets, J. Quastel and A. F. Ramírez, Trans. Amer. Math. Soc. 361, 6165-6189 (2009). [ps] [pdf]
- Front propagation in an exclusion one-dimensional reactive
dynamics. M. Jara, G. Moreno and A.F. Ramírez, Markov Process.
Related Fields, 18,
185-206 (2008). [ps] [pdf]

- Central limit theorem for the excited random walk in dimension
d>=2. J. Bérard and A.F. Ramírez, Electron. Comm.
Probab.,
**12**, 303-314 (2007). [ps] [pdf] - Transition asymptotics for reaction-diffusion in random media. G. Ben Arous, S. Molchanov and A.F. Ramírez, Probability and Mathematical Physics: A Volume in Honor of Stanislav Molchanov, Editors - AMS | CRM, 42, 1-40 (2007). [ps] [pdf]
- Fluctuations of the front in a stochastic combustion model. F. Comets, J. Quastel and A.F. Ramírez, Ann. Inst. H. Poincaré Probab. Statist., 43(2), 147-162 (2007).[ps] [pdf]
- Transition from the annealed to the quenched asymptotics for a
random walk on random obstacles. G. Ben Arous, S. Molchanov and
A.F. Ramírez, Ann. Probab. 33(6),
2149-2187 (2005). [ps] [pdf]

- Asymptotic behavior of a stochastic combustion growth
process. A.F. Ramírez and V. Sidoravicius, J. Eur. Math.
Soc. (JEMS),
**6**(3), 293-334 (2004). [ps] [pdf] - Internal DLA in a Random Environment. G. Ben Arous, J.
Quastel and A.F. Ramírez, Ann. Inst. H. Poincaré Probab. Statist.,
**39**(2), 301-324 (2003).[ps] [pdf]

- During the second term of 2016 I am teaching Algebra Lineal. My previous teaching activities are described here.

**Random media in Atacama**, in honor of Francis Comets 60th birthday, December 12-16, 2016.

- PASI: Topics in
percolative and disordered systems, January 2-15, 2012.

- Workshop on Random
Walks, Particle Systems and Random Media, January
14-18, 2008.

**Analysis & Probability in Quantum Physics**, July 27- August 4, 2006.

**Percolation, Particle Systems and Random Media**, January 12-17, 2004.

- 2016- :
Associate Editor,
**Bernoulli**.

- 2012- : Associate Editor, Electronic Journal of
Probability and Electronic Communications in Probability

- 2006-2012: Associate Editor,
**Stochastic Processes and their Applications**

**Millenium nucleus
stochastic models of disordered and complex systems
**