Abstracts

 

Tom Alberts

New York University

Hausdorff dimension of the SLE curve intersected with the real line


Amine Asselah

Université de Paris XII

Intersection and self-intersection local times for random walks in dimension 5 or more


Vincent Beffara

ENS Lyon

Isotropic embeddings


Rafael Benguria

Pontificia Universidad Católica de Chile

Fourier Transform, Null Variety and Laplacian's Eigenvalues


Jean Bérard

Université de Lyon

Large deviations of the front in a one dimensional model of X+Y-->2X


Julien Berestycki

Université de Paris VI

Coalescents and branching processes: how fast do they come down from infinity?


Nathanael Berestycki

University of Cambridge

Velocity gain for some self-repelling processes


Michiel van den Berg

University of Bristol

On the heat equation with singular initial data


Erwin Bolthausen

University of Zurich

A fixed point proof of local central limit theorems


Francis Comets

Université de Paris VII

Stochastic billiards on general tables


Joe Conlon

University of Michigan

The Becker-Doering (B-D) and Lifschitz-Slyozov-Wagner (LSW) equations


María Cristina Depassier

Pontificia Universidad Católica de Chile

Variational results for the speed of pulled and pushed fronts with cutoff


Joaquín Fontbona

Universidad de Chile

Measurabiliy of Optimal Transportation and Convergence Rate for Landau Type Interacting Particle Systems


Luiz Renato Fontes

Universidade de Sao Paulo

Aging scaling limits for trap models related to the REM


Mark Holmes

University of Auckland, New Zealand

Monotonicity for excited random walk in high dimensions


Milton Jara

Université de Louvain

Interacting particle systems with long jumps: an example of superdiffusivity


Leonid Koralov

Princeton University

Mathematical model for polymers


Elena Kosygina

Baruch College and CUNY Graduate Center

Positively and negatively excited random walks on integers


Yevgeniy Kovchegov

Oregon State University

Tunneling to the future and perfect coupling


Servet Martínez

Universidad de Chile

Quasi-stationary distributions for a system of birth and death chains whose traits are located in a continuum


Tom Mountford

EPF Lausanne

Signed voter models


Chuck Newman

New York University

Dynamical discrete web and its continuum analogues


Serguei Popov

Universidade de Sao Paulo

Shape and local growth for multidimensional branching random walks in random environment


José Ramírez

Universidad de Costa Rica

Diffusion limits of eigenvalues of random matrices


Leonardo Rolla

IMPA, Rio de Janeiro

Phase transition for activated random walk models


Jeremy Quastel

University of Toronto

Efect of noise on front propagation in KPP equations


Valentin Sisko

Universidade Federal Fluminense, Niteroi

Escape of mass in zero-range processes with random rates


Alain-Sol Sznitman

ETH Zurich

Random walks and random interlacements


Pierre Tarres

University of Oxford

An asymptotic result for Brownian polymers


Glauco Valle

Universidade Federal do Rio de Janeiro

Hydrodynamics for a one-dimensional model with dissipation of mass at the boundary


Nobuo Yosida

Kyoto University

Branching random walks in random environment: diffusive behavior and localization