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Abstract. We consider an infinite dimensional diffusion on T Z
d
, where T is the circle, defined

by an infinitesimal generator of the form L =
P

i∈Zd

“

ai(η)
2

∂2
i + bi(η)∂i

”

, with η ∈ T Z
d
, where

the coefficients ai, bi are finite range, bounded with bounded second order partial derivatives and
the ellipticity assumption infi,η ai(η) > 0 is satisfied. We prove that whenever ν is an invariant
measure for this diffusion satisfying the logarithmic Sobolev inequality, then the dynamics is
exponentially ergodic in the uniform norm, and hence ν is the unique invariant measure. As
an application of this result, we prove that if A =

P

i∈Zd ci(η)∂i, and ci satisfy the condition
P

i∈Zd

R

c2i dν < ∞, then there is an ǫc > 0, such that for every ǫ ∈ (−ǫc, ǫc), the infinite
dimensional diffusion with generator Lǫ = L + ǫA, has an invariant measure νǫ having a Radon-
Nikodym derivative gǫ with respect to ν, which admits the analytic expansion gǫ =

P

∞

k=0 ǫkfk,
where fk ∈ L2[ν] are defined through f0 = 1,

R

fkdν = 0 and the recurrence equations L∗fk+1 =
A∗fk.
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1. Introduction.

Let T be the unit circle. Consider Ω := C([0,∞); TZ
d

), the space of continuous functions from

[0,∞) to TZ
d

, with the topology of uniform convergence in compact subsets of [0,∞). Let St

be the unique semi-group on the set C(TZ
d

) of continuous real functions on TZ
d

endowed with
the uniform norm ‖ · ‖∞, associated to the generator which is the closure on Ω of the operator
(L, D0) where L :=

∑

i∈Zd

(

1
2ai(η)∂2

i + bi(η)∂i

)

, with ∂i := ∂
∂ηi

, and D0 is the set of local functions

with continuous second order partial derivatives. Here, a : TZ
d → [0,∞)Z

d

, b : TZ
d → RZ

d

are

Borel-measurable functions which we call sets of coefficients, η ∈ TZ
d

, and ai, bi and ηi are their
i-th components. We say that the coefficients a and b are bounded if supi,η{ai, |bi|} < ∞ and of
finite range R ∈ Z+ if for each i ∈ Zd, ai(η) and bi(η) depend only on coordinates ηj of η such that
|j − i| ≤ R. We say that the coefficients a and b have bounded second order partial derivatives if

supi,j,k,η

{∣

∣

∣

∂2ai

∂ηj∂ηk

∣

∣

∣
,
∣

∣

∣

∂2bi

∂ηj∂ηk

∣

∣

∣

}

< ∞. The operator (L, D0) defined above, with coefficients a and b

that are bounded, of finite range and with bounded second order partial derivatives, is closable.
Its closure, which we will denote (L, D(a, b)), is an infinitesimal generator and defines a Markov

semi-group St on the space C(TZ
d

) (see [7] and [4]). Such a process will be called a finite range
infinite dimensional diffusion family with bounded coefficients a and b with bounded second order
partial derivatives. If

a := inf
i,η

ai(η) > 0, (1)
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we will say that this diffusion is uniformly elliptic. Given a probability measure ν defined on

TZ
d

, throughout the paper we will use the notation 〈f〉ν :=
∫

fdν. We will call this measure an

invariant measure for the infinite dimensional diffusion, if
∫

fdν =
∫

Stfdν for every f ∈ C(TZ
d

)
and t > 0.

Few general results exist providing sufficient conditions for the existence of a unique invariant
measure, or for the exponential ergodicity of infinite dimensional diffusions, specially out of the
subclass of reversible processes. Furthermore, given that in general it is difficult to explicitely
describe the invariant measures, it is natural to wonder what is the breadth of, for example, the
classical theory of analytic perturbations for the invariant measures. In this paper we address these
issues, within the context of probability measures satisfying the logarithmic Sobolev inequality and

not satisfying any kind of reversibility assumptions. We say that a probability measure ν on TZ
d

endowed with its Borel σ-field B, satisfies the logarithmic Sobolev inequality with respect to the
Laplacian operator if there is a constant γ > 0 such that for every function f ∈ D0 it is true that

〈

f2 ln
f

√

〈f2〉ν ]

〉

ν

≤ γ

〈

∑

i∈Zd

(∂if)
2

〉

ν

. (2)

The first result of this paper provides a sufficient condition for exponential ergodicity of infinite
dimensional diffusions. Let us define for f ∈ D0, the triple semi-norm

|||f ||| := sup
i,j,η

∣

∣

∣

∣

∂2f

∂ηi∂ηj

∣

∣

∣

∣

.

Theorem 1. Let St be the semi-group of a finite range uniformly elliptic infinite dimensional diffu-

sion family on TZ
d

with bounded coefficients a and b with bounded second order partial derivatives.

Let ν be a probability measure on TZ
d

which is invariant with respect to St and which satisfies
the logarithmic Sobolev inequality with respect to the Laplacian operator. Then, there exist positive
constants γ and A such that for any function f ∈ D0 we have,

sup
η∈TZd

|Stf(η) − 〈f〉ν | ≤ A|||f |||e−γt.

Theorem 1 is an improvement of a result of Zegarlinski [11] for reversible processes, formulated
here in terms of invariant measures instead of Gibbs measures. As a corollary of Theorem 1, we
obtain the following considerable improvement of Theorem 1 of [9]. For every t ≥ 0 and measure µ

on TZ
d

, we define µSt as the unique measure such that
∫

Stfdµ =
∫

fd(µSt) for every continuous

function f on TZ
d

.

Corollary 1. Consider a finite range uniformly elliptic infinite dimensional diffusion family on

TZ
d

with bounded coefficients a and b with bounded second order partial derivatives. Suppose that
ν is an invariant measure which satisfies the logarithmic Sobolev inequality with respect to the

Laplacian operator. Then, ν is unique and for every probability measure µ on TZ
d

, one has that
limt→∞ µSt = ν.

Theorem 2, which we formulate below, establishes the existence of a Raleigh-Schrödinger series
with a positive radius of convergence around invariant measures of uniformly elliptic diffusions with
finite range and bounded coefficients, satisfying the logarithmic Sobolev inequality with respect
to the Laplacian operator. To state Theorem 2, we need to introduce the following regularity
condition on coefficients.
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Condition (R). We say that a set of coefficients c = {ci : i ∈ Zd} satisfies the regularity condition
(R), if

C0 :=

√

√

√

√

∥

∥

∥

∥

∥

∑

i

c2
i

∥

∥

∥

∥

∥

∞

< ∞.

Any operator of the form

A =
∑

i∈Zd

ci(η)∂i,

where c is a set of coefficients, will be called a diagonal first order operator. For each p ≥ 1, we

denote by Lp[ν] the Banach space of functions f ∈ T Z
d

with norm ‖f‖p,ν :=
(∫

|f |dν)
)1/p

. We
adopt the convention that L2[ν] is the space of complex valued square integrable functions and given
two functions f, g ∈ L2[ν], we denote their inner product by (f, g)ν =

∫

f̄ gdν. It will be shown,
that if L is the generator of an elliptic infinite dimensional diffusion and A a diagonal first order
operator with coefficients satisfying condition (R) and having both operators coefficients which are
bounded and of finite range with bounded second order partial derivatives, then the closure of the
operators (L, D0) and (L+A, D0), on L2[ν] have the same domain if ν is an invariant measure for L
satisfying the logarithmic Sobolev inequality with respect to the Laplacian operator. Furthermore,
given an operator (T, D(T )) on L2[ν], we denote by (T ∗, D(T ∗)) its adjoint. We then have that
for every function f ∈ L2[ν], the equation

L∗
0g = −A∗f, (3)

has a solution g ∈ L2[ν]. Here, equation (3) should be interpreted in the weak sense as (g, L0φ)ν =
−(f, Aφ)ν , for every φ ∈ D0. We will also show that 0 is a simple eigenvalue of L∗

0. This implies
that the equation (3) has a unique solution g such that 〈g〉ν = 0. We will denote by M2[ν] the set

of probability measures on TZ
d

which have a Radon-Nikodym derivative with respect to ν which
is square integrable in L2[ν].

Theorem 2. Let L0 be the infinitesimal generator of a uniformly elliptic infinite dimensional diffu-
sion with finite range, bounded coefficients a and b having bounded second order partial derivatives.
Let A be a diagonal first order operator with finite range, bounded coefficients having second order
partial derivatives and satisfying the regularity condition (R). Assume that ν is an invariant mea-
sure for the infinite dimensional diffusion with generator L0, which satisfies the logarithmic Sobolev
inequality with respect to the Laplacian operator. Then, for each ǫ ∈ (−ǫc, ǫc), where ǫc := a

C0

√
γ ,

the diffusion with generator Lǫ := L0 + ǫA has a unique invariant measure νǫ in M2[ν] with a
Radon-Nikodym derivative gǫ with respect to ν with the following expansion in L2[ν],

gǫ =

∞
∑

k=0

ǫkfk,

where {fk : k ≥ 0} is the unique sequence of functions in L2[ν] defined by f0 := 1, the conditions
〈fk〉ν = 0, and the recurrence relations

L∗
0fk+1 = −A∗fk.

Furthermore, there exists a constant C such that for every k ≥ 1 one has that ‖fk‖2,ν ≤ Cǫ−k
c .
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Theorem 2 does not require the unperturbed generator to be reversible with respect to the invari-
ant measure. In [6], within the context of systems which satisfy the Einstein relation, a similar
expansion was derived for interacting particle systems, under the assumption that the unperturbed
generator is reversible.

A crucial ingredient in the proofs of Theorems 1 and 2, is the observation that the Dirichlet form
of the generator of a diffusion having an invariant measure that satisfies the logarithmic Sobolev
inequality, coincides with the Dirichlet form of the symmetrization of the generator. For Theorem
1, this together with the spectral gap, implies an exponentially fast convergence to the equilibrium
measure in the L2[ν] norm. One can then get exponentially fast convergence in the supremum
norm through the following three additional ingredients: comparisons between a truncated version
of the dynamics and the full dynamics, Gross lemma and uniform norm estimates on the marginal
distribution of the process which are obtained using Girsanov theorem. The proof of Theorem 2,
uses the machinery of analytic perturbation theory for operators which have a relatively bounded
perturbation on Banach spaces. The uniqueness of the perturbed invariant measure in M2[ν] of
Theorem 2 follows from Corollary 1.

In the next section of this paper, we derive some important consequences of the property that
a diffusion has an invariant measure satisfying the logarithmic Sobolev inequality (and hence the
spectral gap). In section 3, we use the results of section 2, to prove Theorem 1. Theorem 2
is proved in section 4. In section 5, Theorem 2 is illustrated within the context of interacting
Brownian motions.

2. Symmetrization of the infinitesimal generator.

Here, we will show that a uniformly elliptic infinite dimensional diffusion with finite range and
bounded coefficients having second order partial derivatives, has a Dirichlet form which looks like
the Dirichlet form of its symmetrized generator. This in turn implies an exponential convergence
result to equilibrium in the corresponding L2 norm.

If ν is an invariant measure for an infinite dimensional diffusion with Markov semi-group St and

generator (L, D(a, b)), then for every function f ∈ C(TZ
d

) one has that,

||Stf ||2,ν ≤ ||f ||2,ν. (4)

It is possible to continuously extend the Markov semi-group St as a Markov semi-group to L2[ν].
It is a standard fact to show that the infinitesimal generator of such an extension is the closure
in L2[ν] of the (L, D0) (see for example [7]). We will denote it (L, D̄(a, b)). In the sequel, we will

make no notational distinction between the semi-group on C(TZ
d

) or on L2[ν]. Given a subset
Λ ⊂ Zd, let us denote by FΛ, the σ-algebra in B of sets generated by the coordinates k ∈ Λ. We
will denote by νΛ the restriction of ν to the FΛ. Furthermore, for r > 0, we will define the box
Λr := [−r, r]d ∩ Zd.

Proposition 1. Consider a uniformly elliptic infinite dimensional diffusion with finite range,
bounded coefficients a and b with bounded second order partial derivatives. Let Let (L, D̄(a, b)) be
its infinitesimal generator and ν be an invariant measure of such a diffusion. Then, the following
are satisfied.

(i) For every f ∈ D̄(a, b)

(f, Lf)ν = −
∑

i∈Zd

∫

ai(∂if)2dν.
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(ii) Assume that the invariant measure ν satisfies the spectral gap with constant γ. Then, for
every f ∈ D̄(a, b) we have

‖f − 〈f〉ν‖2
2,ν ≤ −γ

a
(f, Lf)ν .

We continue with the following important corollary of part (i) of the above proposition.

Corollary 2. Consider a uniformly elliptic infinite dimensional diffusion with finite range, bounded
coefficients a and b with bounded second order partial derivatives. Let Let (L, D̄(a, b)) be its in-
finitesimal generator and ν be an invariant measure of such a diffusion. Let A =

∑

ci∂i be a
diagonal first order operator such that the coefficients c are of finite range, bounded, with bounded
second order partial derivatives and satisfy the regularity condition (R). Assume that ν satisfies
the logarithmic Sobolev inequality. Then, for every λ positive we have that for every f ∈ D0 the
following inequality is satisfied,

||Af ||2,ν ≤ C0√
a

1

λ
‖Lf‖2,ν +

C0√
a
λ||f ||2,ν , (5)

where

C0 :=

√

√

√

√

√

∥

∥

∥

∥

∥

∥

∑

i∈Zd

c2
i

∥

∥

∥

∥

∥

∥

∞

.

In particular, the operator (A, D0) is relatively bounded with respect to (L, D0) in L2[ν], with
L-bound 0. Hence the closure of (L + A, D0) has the same domain D̄(a, b) as L.

Proof. Let f ∈ D0. Note that

||Af ||22,ν =
∫

(
∑

i ci∂if)
2
dν ≤ C2

0

∑

i

∫

(∂if)2dν

≤ C2

0

a (f, Lf)ν ≤ C2

0

a ‖f‖2,ν ‖Lf‖2,ν .

Here, we have used part (i) of Proposition 1 in the second inequality. On the other hand, for every
positive λ, a, b we have that ab ≤ λ−2b2 + λ2a2 It follows that

||Af ||22,ν ≤ C2
0

a

(

λ−2 ‖Lf‖2
2,ν + λ2 ‖f‖2

2,ν

)

.

which proves inequality (5). By taking λ arbitrarily large, we see that A has L-bound 0. Finally,
by Theorem 1.1 of page 190 of Kato [5], we can see that the closure of the operators (L, D0) and
(L + A, D0) in L2[ν] have the same domain. �

Corollary 2, in turn implies the following.

Corollary 3. Let (L, D̄(a, b)) be the infinitesimal generator of a uniformly elliptic infinite dimen-
sional diffusion with finite range, bounded coefficients a and b, with bounded second order partial
derivatives. Let ν be an invariant measure of such a diffusion satisfying the logarithmic Sobolev
inequality with respect to the Laplacian operator. Let a be the lower bound defined in (1). Then,
for every f ∈ L2(ν) it is true that,

||Stf − 〈f〉ν ||2,ν ≤ e−
a
γ

t||f − 〈f〉ν ||2,ν . (6)
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To prove the proposition, we will introduce a truncated version of the infinite dimensional diffusion.
Let us fix a natural n ≥ 1. Define, a truncated version of the finite range infinite dimensional
diffusion with bounded coefficients a and b, through the truncated infinitesimal generator (Ln, D2)
which is the closure on L2[ν] of (Ln, D0), where

Ln =
∑

i∈Λn

(

āi∂
2
i + b̄i∂i

)

, (7)

with āi(η) :=
∫

ai(η)dν̄n and b̄i(η) :=
∫

bi(η)dν̄n, and ν̄n is the conditional probability of ν given
the σ-algebra FΛn

of the cylinders in Λn. We will call this diffusion process the truncated version
at scale n of the infinite dimensional diffusion process with bounded coefficients a and b and denote

the corresponding semi-group on L2[ν] by {Sn
t : t ≥ 0}. Given η ∈ TZ

d

, we define ηn, called the
configuration η truncated at scale n by ηn(x) = η(x) whenever |x| ≤ n and ηn(x) = 1 otherwise.

For each natural n ≥ 1, consider the restriction νn := νΛn
of the invariant measure ν to the

box Λn. Note that νn is the invariant measure of the diffusion process on T Λn with infinitesimal
generator (7), which is finite dimensional. Therefore it has a density vn which by the compactness
of T Λn satisfies infη vn(η) > 0. Let {vn,i : i ∈ Zd} be the conditional probability densities of νn

given FΛn−{i}. These are also smooth and satisfy infη,i vn,i(η) > 0. It is understood that both vn

and vn,i are functions only of the coordinates of η in Λn. We can therefore write the truncated
generator (7) as

Ln =
∑

i∈Λn

(

1

vn,i
∂i(vn,iāi∂i) −

1

vn,i
∂i(vn,iāi)∂i + b̄i∂i

)

.

Consider the operator (Sn, D0), where

Sn =
∑

i∈Λn

1

vn,i
∂i(vn,iāi∂i).

By an argument similar to the proof of Corollary 2, we can show that on L2[ν], the operators
(Ln, D0) and (Sn, D0) are closable and their closures have the same domain D2. Now note that
(Sn, D0) is reversible with respect to the measure ν. It follows that the operator (Sn, D2) is
self-adjoint in L2[ν] [7] and that for every f, g ∈ D2,

∫

gSnfdν = −
∑

i∈Λn

∫

āi∂ig∂ifdν. (8)

On the other hand, the fact that ν is an invariant measure implies that for every function f ∈ D0

depending only on coordinates in the box Λn,

∑

i∈Λn

∫

f

(

1

vn,i
∂2

i (vn,iāi) −
1

vn,i
∂i(vn,ib̄i)

)

dν = 0.

This implies that ν-a.s. (and also a.s. with respect to the Lebesgue measure on T Λn),

∑

i∈Λn

(

1

vn,i
∂2

i (vn,iāi) −
1

vn,i
∂i(vn,ib̄i)

)

= 0.

Hence, for every f ∈ D2 it is true that,

∫

fLnfdν =

∫

fSnfdν. (9)
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The proof of Proposition 1 now follows from the equalities (8), (9) after taking the limit when
n → ∞.

Let us now prove Corollary 3. Note that since ν satisfies the logarithmic Sobolev inequality
with respect to the Laplacian operator (2) it necessarily satisfies the spectral gap inequality for
every f ∈ D0 (see for example [2]),

||f ||22,ν ≤ γ
∑

i∈Zd

∫

(∂if)2dν,

and hence for f ∈ D2 depending only on the coordinates on Λn, using the uniform ellipticity
condition of the coefficients {ai : i ∈ Zd} inherited by {āi : i ∈ Zd} with the same lower bound, we
get,

||f ||22,ν ≤ −γ

a

∫

fSnfν.

It now follows that for every f ∈ L2[ν] depending only on coordinates on Λn, and t > 0

d

dt
||Sn

t f − 〈f〉ν ||22,ν = 2

∫

(Sn
t f − 〈f〉ν)Ln(Sn

t f − 〈f〉ν)dν

= 2

∫

(Sn
t f − 〈f〉ν)Sn(Sn

t f − 〈f〉ν)dν

≤ −2
a

γ
||Sn

t f − 〈f〉ν ||22,ν .

Thus,

||Sn
t f − 〈f〉ν ||2,ν ≤ e−

a
γ

t||f − 〈f〉ν ||2,ν . (10)

Finally, since for f ∈ D0 we have limn→∞ ||Lnf − Lf ||2 = 0, by Theorem I.2.12 of Trotter-Kurtz
in Liggett [7], we can conclude that for every t ≥ 0, limn→∞ ||Sn

t f − Stf ||2 = 0. Therefore, taking
the limit when n → ∞ in (10) finishes the proof of (6) for functions f ∈ L2(ν) depending only on
a finite number of coordinates. Using the fact that this set of functions is dense in L2(ν) we finish
the proof of Corollary 3.

3. Proof of Theorem 1.

The basis of the proof of Theorem 1 is Corollary 3 of the previous section, a truncation estimate,
Gross lemma and a uniform estimate on marginal distributions. Throughout, γ will denote the
constant appearing in the logarithmic Sobolev inequality (2). Furthermore, we will adopt the
convention that given any sequence {yn}, and positive real number x, yx := y⌊x⌋.

Lemma 1. [Truncation estimate]. For every δ > 0 there exist constants a > 0 and A > 0 such
that for all f ∈ D0 the following statements are satisfied.

(i) For every n ≥ at,

sup
η∈TZd ,u:0≤u≤t

|Suf(η) − Suf(ηn)| ≤ A|||f |||e−δt, (11)

(ii) For every n ≥ at,

sup
η∈TZd ,u:0≤u≤t

|Suf(η) − Sn
uf(η)| ≤ A|||f |||e−δt. (12)
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Lemma 2. [Gross lemma]. Let p(t) = 1 + e4t/γ. Then, for all f ∈ L2(ν) and t ≥ 0, it is true
that

||Stf ||p(t),ν ≤ ||f ||2,ν . (13)

Lemma 3. [Uniform norm estimate on marginal distributions]. Let η ∈ TZ
d

and denote
by δη the probability measure with a unique atom at η. Consider the evolution up to time 1 of this
measure under the truncated version at scale n of the infinite dimensional diffusion, µn := Sn

1 δη.

Denote by gn,η, the Radon-Nikodym derivative of µn with respect to νΛn
. Then, if q(t) := 1+e−4t/γ,

for every b > 0 we have that

lim
t→∞

sup
η

||gbt,η||q(s),ν ≤ 1, (14)

where s is given by the relation t = 1 + s + s2.

Let us now show why do these four facts imply Theorem 1. Let f ∈ D0. First, note that without loss
of generality, we can assume that

∫

fdν = 0. For t ≥ 1, define s ≥ 0 by the relation t = 1 + s + s2.
Remark that by parts (i) and (ii) of the truncation estimate with δ = 1, there exist constants
a > 0 and A > 0 such that,

|Stf(η)| ≤
∣

∣

∣

∣

∫

Ss+s2f(ζ)dµat(ζ
at)

∣

∣

∣

∣

+ A|||f |||e−t, (15)

where µat is the restriction to T Λat of the measure Sat
1 δη. Now

∣

∣

∣

∣

∫

Ss+s2f(ζ)dµat

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ss+s2f(ζ)gat,ηdνΛat

∣

∣

∣

∣

. (16)

Since 1
p(t) + 1

q(t) = 1, by Hölder’s inequality, we see that the right-hand side of inequality (16) is

upper-bounded by

||Ss+s2f(ζ)||p(s),ν ||gat,η||q(s),ν ≤
(

||Ss+s2f(ζ)||p(s),ν + A|||f |||e−t
)

||gat,η||q(s),ν

≤
(

||Ss2f(ζ)||2,ν + A|||f |||e−t
)

||gat,η||q(s),ν ≤
(

e−as2/γ ||f ||2,ν + A|||f |||e−t
)

sup
η

||gat,η||q(s),ν ,

where in the first inequality we have used the truncation estimate of Lemma 1, in the second
inequality Gross lemma (Lemma 2) and the contraction inequality (4), and in the last inequality
the spectral gap estimate Corollary 3. Now, by Lemma 3, there is a t0 > 0 such that K1(ν) :=
supt≥t0 supη ||gat,η||q(s),ν < ∞. Thus, by inequality (15), and the previous development, for t ≥ t0
we have that

|Stf(ζ)| ≤ K2(ν)
(

e−as2/γ ||f ||2,ν + A|||f |||e−t
)

,

where K2(ν) := K1(ν) + 1. Observing that ||f ||2,ν ≤ |||f |||, and using the density of D0 in L2(ν)
finishes the proof of Theorem 2.

Since they are standard results, the proofs of Lemmas 1 and 2 are omitted (the proof of Lemma
1 is analogous to that of Theorem 3 of [8] and the proof of Lemma 2 can be found in [3] and [11]).
Hence, we now proceed to prove Lemma 3.
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Proof of Lemma 3. We will follow the techniques of [3], [2] and [11]. Consider the semi-group
{Sn

t : t ≥ 0} of the truncated version at scale n of the infinite dimensional diffusion process with
coefficients a and b, with infinitesimal generator Ln as defined in (7). Let us call Pn,η the law of

such a process starting from η ∈ T Z
d

on the space C([0,∞); T Λn) endowed with its Borel σ-algebra,
for t ≥ 0, Pn,η,t the restriction of such a law to C([0, t); T Λn) and Ft the information up to time t
of the process. For each η ∈ T Λn and t > 0, let hn,η,t be the Radon-Nikodym derivative of Sn

t δη

with respect to the Lebesgue measure. Consider the finite dimensional diffusion on T Λn defined
by the infinitesimal generator

Dn =
∑

i∈Λn

∂i(ā
n
i ∂i).

Let us call Qn,η the law of this diffusion starting from η ∈ T Λn defined on C([0,∞); T Λn) with
its Borel σ-algebra, and for t ≥ 0, Qn,η,t its restriction to Ft. Furthermore, call dn,η,t the Radon-
Nikodym derivative of the law of this process at time t with respect to Lebesgue measure. Classical
heat-kernel estimates give us that

e−C1|Λn| ln |Λn| ≤ ||dn,η,1||∞ ≤ eC1|Λn|, (17)

for some constant C1 > 0. Indeed, the upper bound can be computed using ideas of Nash found in
Fabes-Stroock [1] (see also [8]). The lower bound, with an explicit dependence of the constants in
the dimension is proven in Lemma 2.6 and Lemma 2.7 of [1]. Now, recalling that vn is the density
of the measure νΛn

and noting that vn =
∫

dn,η,1dν, we see that it is also true that

e−C1|Λn| ln |Λn| ≤ ||vn||∞ ≤ eC1|Λn|. (18)

To prove Lemma 3, let us first write

||gbt,η||q(s)q(s),ν =

∫
(

hbt,η,1

dbt,η,1

)q(s)(
dbt,η,1

vbt

)q(s)

dν.

Therefore, using the bounds (17) and (18), we see that there is a constant C2 > 0 such that

||gbt,η||q(s)q(s),ν ≤
(

eC2|Λbt| ln |Λbt|
)q(s)−1

∫
(

hbt,η,1

dbt,η,1

)q(s)
dbt,η,1

vbt
dν. (19)

Note that

hbt,η,1

dbt,η,1
= EQbt,η,1

[

dPbt,η,1

dQbt,η,1

∣

∣

∣

∣

F=1

]

, (20)

where for each t ≥ 0, F=t is the σ-algebra of events at time t. Then, by Jensen’s inequality and
the identity (20),

∫

(

hbt,η,1

dbt,η,1

)q(s)
dbt,η,1

vbt
dν =

∫

(

EQbt,η,1

[

dPbt,η,1

dQbt,η,1

∣

∣

∣
F=1

])q(s)
dbt,η,1

vbt
dν

≤
∫

EQbt,η,1

[

(

dPbt,η,1

dQbt,η,1

)q(s)
∣

∣

∣

∣

F=1

]

dbt,η,1

vbt
dν = EQbt,η,1

[

(

dPbt,η,1

dQbt,η,1

)q(s)
]

. (21)

Now, by the Girsanov theorem, for every natural n and t ≥ 0,

dPn,η,t

dQn,η,t
= exp

(

∑

i∈Λn

(

∫ t

0

1

an
i

(

bn
i − ∂an

i

∂ηi

)

dηi(s) −
∫ t

0

1

2an
i

(

bn
i − ∂an

i

∂ηi

)2

ds

))

.
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Therefore, by the uniform ellipticity assumption and the boundedness of the coefficients and its
derivatives, we know that there is a constant C3 > 0 such that

EQbt,η,1

[

(

dPbt,η,1

dQbt,η,1

)q(s)
]

≤ exp
{

C3(q(s)
2 − q(s))|Λbt|

}

≤ exp
{

2C3e
−4s/γ |Λbt|

}

. (22)

Combining (22) with (21) and then with (19), we obtain see that there is a constant C4 > 0 such
that

sup
η

||gbt,η||q(s),ν ≤ exp
{

C4e
−4s/γ |Λbt| ln |Λbt|

}

. (23)

Since limt→∞ e−4s/γ |Λbt| ln |Λbt| = 1, taking the limit when t tends to ∞ in inequality (23), we
obtain Lemma 3.

�

4. Proof of Theorem 2.

We need to recall some basic notions (see for example Kato [5]) which will be used throughout
this section. Given a closed operator T defined on L2[ν], we will denote its spectrum by Σ(T ).
We will denote by R(z, T ) the resolvent operator for every z /∈ Σ(T ). We say that a simple closed
curve Γ in the complex plane C separates the spectrum Σ(T ), if there exist subsets of C, Σ1 and
Σ2 such that Σ(T ) = Σ1∪Σ2, Σ1 is in the exterior of Γ and Σ2 is in the interior of Γ. Furthermore,
we say that two subspaces M1 and M2 of L2[ν] form a decomposition associated to Σ1 and Σ2 if
L2[ν] = M1 ⊕ M2, the spectrum of TM1

is Σ1 and the spectrum of TM2
is Σ2. Here TM1

:= P1T
and TM2

:= P2T , where P1 is the projection of L2[ν] onto M1 along M2 and P2 the projection of
L2[ν] onto M2 along M2.

Firstly, we derive the following proposition giving some basic information about the effect of di-
agonal first order operators with coefficients satisfying condition (R) on the infinitesimal generator
of infinite dimensional diffusions.

Proposition 2. Consider a uniformly elliptic infinite dimensional diffusion with finite range,
bounded coefficients a and b with bounded second order partial derivatives. Let (L0, D̄(a, b)) be
its infinitesimal generator. Let ν be an invariant measure for this diffusion which satisfies the
logarithmic Sobolev inequality. Let A be a diagonal first order perturbation with coefficients c
satisfying the regularity condition (R), of finite range, bounded with bounded second order partial
derivatives. For each real ǫ, define

Lǫ := L0 + ǫA.

Then the following statements are satisfied.

(i) For every real ǫ and λ positive we have that for every f ∈ D0 the following inequality is
satisfied,

||ǫAf ||2,ν ≤ |ǫ| C0√
a

1

λ
‖L0f‖2,ν + |ǫ| C0√

a
λ||f ||2,ν ,

where C0 :=
√

∥

∥

∑

i∈Zd c2
i

∥

∥

∞.

(ii) For every real ǫ, the operator (Lǫ, D0) is closable, having the same domain D̄(a, b) as the
closure of (L0, D0) on L2[ν].
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(iii) 0 is a simple eigenvalue of the operator (L0, D̄(a, b)). Furthermore, the intersection of the
open disc centered at 0 of radius γ/(2a) with the spectrum Σ(L0) of L0 is {0}, so that 0 is
an isolated eigenvalue.

Proof. Proof of parts (i) and (ii). These statements are a rephrasing of Corollary 2.

Proof of part (ii). It is enough to prove that 0 is a simple eigenvalue of the adjoint operator
(L∗

0, D̄(a, b)∗). Assume that g ∈ D̄(a, b) is a normalized function such that

∫

(L∗
0g)fdν = 0, (24)

for every f ∈ D̄(a, b). To prove that 0 is a simple eigenvalue of L∗
0, it is enough to show that

this implies that ν-a.s. g = 1. But the left-hand side of (24) can be written as
∫

gL0fdν = 0.
Since ν satisfies the logarithmic Sobolev inequality and L0 is a uniformly elliptic diffusion with
bounded, finite range coefficients with second order partial derivatives, by Corollary 1, ν is the
unique invariant measure. It follows that necessarily ν-a.s. g = 1. Let us now show that 0 is an
isolated eigenvalue. From part (ii) of Proposition 1, we see that for every complex z such that
0 < |z| < γ/a − |z| one has that for every f ∈ D2,

‖(L0 − z)f‖2,ν ≥ m‖f‖2,ν,

where m := min{|z|, γ/a − |z|}. This shows that every z such that 0 < |z| < γ/(2a) is in the
resolvent set of L0, which proves the last statement of part (ii) of the proposition.

�

Let ǫ0 > 0. We say that a family {T (ǫ) : ǫ ∈ (−ǫ0, ǫ0)} of bounded operators defined on L2[ν], is
holomorphic in ǫ if and only if each ǫ has a neighborhood in which T (ǫ) is bounded and (f, T (ǫ)g)ν

is holomorphic for every f, g in a dense subset of L2[ν] (see section VII.1 of Kato [5]).

Lemma 4. Let A, L0, Lǫ and ν be as in Proposition 2. Consider the complex contour Γ := {z ∈
C : |z| = γ/(2a)}. Let

ǫc :=
a

C0
√

γ
.

Then the following are satisfied.

(i) For every ǫ ∈ (−ǫc, ǫc), the contour Γ separates the spectrum Σ(Lǫ) of Lǫ into two parts:
Σ1 := {0} and Σ2,ǫ := Σ(Lǫ) − {0}.

(ii) For every ǫ ∈ (−ǫc, ǫc), the decomposition associated to Σ1 and Σ2,ǫ, L2[ν] = M1,ǫ ⊕M2,ǫ,
is such that M1,ǫ is isomorphic to M1,0 and M2,ǫ to M2,0.

(iii) The projection Pǫ of L2[ν] onto M1,ǫ along M2,ǫ is holomorphic as a function of ǫ for
ǫ ∈ (−ǫc, ǫc). and admits the following expansion with radius of convergence ǫc

Pǫ = − 1

2πi

∞
∑

k=0

ǫk

∫

Γ

R(z, L0)(−A R(z, L0))
kdz.

Proof. Part (iii) of Proposition 2 and Theorem 3.16, page 212 of Kato [5], imply that Γ separates
Σ(Lǫ) into two non-empty pieces Σ1 and Σ2. A second application of Theorem 3.16 of [5], proves
part (ii) of the lemma. On the other hand, for every ǫ ∈ (−ǫc, ǫc), 0 is an eigenvalue of the
operator Lǫ. It follows that 0 is an eigenvalue of L∗

ǫ . Hence, part (ii) of this lemma, implies
part (i). To prove part (iii), note that for z ∈ Γ, whenever ǫ is non-negative and is such that
‖ǫA R(z, L0)‖2,ν < 1, we have the following expansion (see Theorem 1.5, page 66 and chapter VIII
of [5])
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R(z, Lǫ) = R(z, L0)

∞
∑

k=0

ǫk(−A R(z, L0))
k.

Observing that for z ∈ Γ,

∥

∥

∥

∥

L0

L0 − z

∥

∥

∥

∥

2,ν

≤ 2 and ‖R(z, L0)‖2,ν ≤ γ

2a
,

we conclude that for every λ > 0,

‖ǫA R(z, L0)‖2,ν ≤ 2ǫC0√
a

1

λ
+

ǫC0γ

2a3/2
λ.

Taking the infimum over λ > 0, we conclude that

‖ǫA R(z, L0)‖2,ν ≤ ǫ
C0

√
γ

a
,

which proves the analyticity of the resolvent operator R(z, Lǫ) for z ∈ Γ when ǫ ∈ (−ǫc, ǫc). Finally,
the fact that the projection Pǫ of L2[ν] onto M1,ǫ along M2,ǫ can be expressed as

Pǫ = − 1

2πi

∫

Γ

R(z, Lǫ)dz,

proves part (iii).
�

From Lemma 4, we have directly the following corollary regarding the adjoints L∗
0 and A∗ of L0

and A in L2[ν] respectively.

Corollary 4. Let A, L0, Lǫ and ν be as in Proposition 2. Consider the complex contour Γ := {z ∈
C : |z| = γ/(2a)}. Let

ǫc :=
a

C0
√

γ
.

Then the following are satisfied.

(i) For every ǫ ∈ (−ǫc, ǫc), the contour Γ separates the spectrum Σ(L∗
ǫ ) of L∗

ǫ into two parts:
Σ∗

1 := {0} and Σ∗
2,ǫ := Σ(L∗

ǫ ) − {0}.
(ii) For every ǫ ∈ (−ǫc, ǫc), the decomposition associated to Σ∗

1 and Σ∗
2,ǫ, L2[ν] = M∗

1,ǫ ⊕M∗
2,ǫ,

is such that M∗
1,ǫ is isomorphic to M∗

1,0 and M∗
2,ǫ to M∗

2,0.
(iii) The projection P ∗

ǫ of L2[ν] onto M∗
1,ǫ along M∗

2,ǫ is holomorphic as a function of ǫ for
ǫ ∈ (−ǫc, ǫc). and admits the following expansion with radius of convergence ǫc

P ∗
ǫ = − 1

2πi

∞
∑

k=0

ǫk

∫

Γ̄

(−R(z, L∗
0)A

∗)kR(z, L∗
0)dz.

Let us now prove Theorem 2. By parts (i) and (ii) of Corollary 4, we see that for each ǫ ∈ (−ǫc, ǫc)
there exists a unique invariant measure νǫ of the infinite dimensional diffusion with generator Lǫ

in M2[ν]. On the other hand, we know that g := 1 is an eigenfunction associated to the eigenvalue
0 of L0 in L2[ν]. Let

g′ǫ := P ∗
ǫ g.

By part (iii) of Corollary 4, we know that g′ǫ admits the expansion



EXPONENTIAL ERGODICITY FOR NON-REVERSIBLE DIFFUSIONS 13

g′ǫ =

∞
∑

k=0

ǫkf ′
k,

where f ′
0 := g and

f ′
k := − 1

2πi

∫

Γ̄

(−R(z, L∗
0)A

∗)kR(z, L∗
0)gdz.

By parts (i) and (ii) of Corollary 4, necessarily L∗
ǫg

′
ǫ = 0. Hence, for every f ∈ D̄(a, b),

∞
∑

k=0

ǫk(f ′
k, (L0 + ǫA)f)ν = 0.

Matching equal powers of ǫ in the above equation, we conclude that for each k ≥ 0, h := fk+1 is
solution of the equation

L∗
0h = −A∗f ′

k. (25)

Since the kernel ker(L∗
0) of the operator L∗

0 is one-dimensional and A∗f ′
k is orthogonal to ker(L∗

0),
it follows that the sequence of functions f0 := f ′

0 and fk := f ′
k − 〈f ′

k〉ν , k ≥ 1, is the only sequence
satisfying (25) under the condition that the average of each term with respect to ν vanishes.
But since 〈gǫ〉ν = 0, we see that

〈
∑∞

k=1 ǫkf ′
k

〉

ν
= 0. It follows that gǫ := 1 +

∑∞
k=1 ǫkfk is the

Radon-Nikodym derivative of νǫ with respect to ν. This finishes the proof of Theorem 2.

5. Interacting Brownian Motions.

Here we consider an illustration of Theorem 2 within the context of interacting Brownian mo-
tions. Let {Vi : i ∈ Z} be a set of smooth functions defined on T Z. We assume that they are
bounded, of finite range R (in other words, for each i ∈ Z, Vi is a function only of ηj for j such
that |j − i| ≤ R) and with bounded second order partial derivatives. Consider the infinitesimal
generator

L0 =
∑

i∈Z

(

∂2
i + (∂iVi)∂i

)

.

This can also we written as L0 =
∑

i∈Z
e−Vi∂i(e

Vi∂i). It is a well known fact that this process has
an invariant measure ν which satisfies the logarithmic Sobolev inequality. We wish to quantify the
effect over the invariant measure of perturbing the above generator by the following operator:

A := ∂0.

By Theorem 2, the diffusion with generator Lǫ := L0 + ǫA, has an invariant measure with a
Radon-Nikodym derivative gǫ with respect to ν, which admits the expansion

gǫ = 1 +

∞
∑

k=1

ǫkfk,

with L∗
0fk+1 = −A∗fk, 〈fk〉ν = 0 for k ≥ 0 and f0 := 1. Hence, we see that f1 satisfies the

equation

∑

j∈Z

eVj ∂j(e
−Vj ∂jf1) = −∂0e

V0 .

Then, writing f1 = −L−1
0 (∂0e

V0), we have up to first order
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gǫ = 1 − ǫL−1
0 (∂0e

V0) + O(ǫ2),

where lim supǫ→0 ‖O(ǫ2)‖2,ν/ǫ2 < ∞.

Acknowledgments: The author thanks Olivier Bourget for useful discussions related to Theorem
2.
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