Erdal Emsiz

Address:
Facultad de Matemáticas
Pontificia Universidad Católica de Chile
4860, Av. Vicuna Mackenna
Macul, Santiago, Chile
           
Room: 213
Email 1: erdalXemsizATgmailXcom (replace X by a dot)
Email 2: eemsizATmatXucXcl


I am a researcher and associate professor at the Departamento de Matemática, Pontificia Universidad Católica de Chile

Publications:

25. J. F. van Diejen & EE. Exact cubature rules for symmetric functions. Mathematics of Computation (2018). [PDF]

24. J. F. van Diejen & EE. Quadrature rules from finite orthogonality relations for Bernstein-Szegö polynomials. Proc. Amer. Math. Soc. 146 (2018) [PDF]

23. J. F. van Diejen & EE. Solutions of convex Bethe Ansatz equations and the zeros of (basic) hypergeometric orthogonal polynomials. Letters in Mathematical Physics (2018). [PDF]

22. J. F. van Diejen & EE. Discrete Fourier transform associated with generalized Schur polynomials. Proc. Amer. Math. Soc. 146 (2018), 3459–3472. [PDF]

21. J. F. van Diejen, EE & I. N. Zurrián. Completeness of the Bethe Ansatz for an open q-boson system with integrable boundary interactions. Annales Henri Poincaré 19 (2018), 1349-1384 [PDF]

20. J. F. van Diejen & EE. Branching rules for symmetric hypergeometric polynomials . In Advanced Studies in Pure Mathematics 76 (2018), Representation Theory, Special Functions and Painlevé Equations, 125-153 [PDF]

19.J. F. van Diejen & EE. Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations. International Mathematics Research Notices (2017) [PDF]

18. J. F. van Diejen & EE. Orthogonality of Bethe Ansatz eigenfunctions for the Laplacian on a hyperoctahedral Weyl alcove. Communications in Mathematical Physics 350 (2017), 1017-1067 [PDF]

17. J. F. van Diejen & EE. Spectrum and eigenfunctions of the lattice hyperbolic Ruijsenaars-Schneider system with exponential Morse term. Annales Henri Poincaré 17 (2016), 1615-1629 [PDF]

16. J. F. van Diejen & EE. Branching formula for Macdonald-Koornwinder polynomials. Journal of Algebra 444 (2015), 606-6014 [PDF]

15. J. F. van Diejen & EE. Difference equation for the Heckman-Opdam hypergeometric function and its confluent Whittaker limit. Advances in Mathematics 285 (2015), 1225-1240 [PDF]

14. J. F. van Diejen & EE. Quantum integrals for a semi-infinite q-boson system with boundary interactions. SIGMA 11 (2015), 037, 9 pages [PDF]

13. J. F. van Diejen & EE. Integrable boundary interactions for Ruijsenaars' difference Toda chain. Communications in Mathematical Physics 337 (2015), 171--189 [PDF]

12. J. F. van Diejen & EE. The semi-infinite q-boson system with boundary interaction. Letters in Mathematical Physics 104 (2014), 103--113 [PDF]

11. J. F. van Diejen & EE. Diagonalization of the infinite q-boson system. Journal of Functional Analysis 266 (2014), 5801--5817 [PDF]

10. J. F. van Diejen & EE. Orthogonality of Macdonald polynomials with unitary parameters. Mathematische Zeitschrift 276 (2014), 517--542 [PDF]

9. J. F. van Diejen & EE. Boundary interactions for the semi-infinite q-boson system and hyperoctahedral Hall-Littlewood polynomials. SIGMA 9 (2013), 077, 12 pages [PDF]

8.J. F. van Diejen & EE. Discrete harmonic analysis on a Weyl alcove. Journal of Functional Analysis 265 (2013), 1981--2038 [PDF]

7. J. F. van Diejen & EE. A discrete Fourier transform associated with the affine Hecke algebra. Advances in Applied Mathematics 49 (2012), 24--38 [PDF]

6. J. F. van Diejen & EE. Unitary representations of affine Hecke algebras related to Macdonald spherical functions. Journal of Algebra 354 (2012), 180--210 [PDF]

5. J. F. van Diejen & EE. Pieri formulas for Macdonald's spherical functions and polynomials. Mathematische Zeitschrift 269 (2011), 281--292 [PDF]

4. J. F. van Diejen & EE. A generalized Macdonald operator. International Mathematics Research Notices IMRN 2011 , no. 15 , 3560--3574 [PDF]

3. EE. Completeness of the Bethe ansatz on Weyl alcoves. Letters in Mathematical Physics 91 (2010), 61--70 [PDF]

2. EE, E. M. Opdam & J. V. Stokman. Trigonometric Cherednik algebra at critical level and quantum many-body problems. Selecta Mathematica 14 (2009), 571--605 [PDF]

1. EE, E. M. Opdam & J. V. Stokman. Periodic integrable systems with delta-potentials. Communications in Mathematical Physics 264 (2006), 191--225 [PDF]

See also Google Scholar, MathSciNet or Zentralblatt.


Selected conferences, workshop and meetings:

* Geometry Seminar, Radboud University Nijmegen, Nijmegen, April 18, 2018

* General Mathematics Colloquium, Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, Februray 7, 2018

* PRIMA third congress, Oaxaca, Mexico, August 14-18, 2017

* Algebra and Geometry Seminar, Università di Roma "La Sapienza", Roma, Italia, September 21, 2016

* Mathematical Physics Seminar, University of Stockholm and KTH, Sweden, February 10, 2016

* Coloquio del CIEM, FAMAF, Univ. Nac. de Córdoba, Argentina, September 9, 2015

* XVIIIth International Congress on Mathematical Physics , Santiago, Chile, July 27 - August 1, 2015

* The 13th International Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA-13) , June 1-5, 2015, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA

* International Conference Spectral Theory and Mathematical Physics, Santiago de Chile, 24 - 28 November 2014

* Exact Solvability and Symmetry Avatars, Conference held on the occasion of Luc Vinet's 60th birthday. August 25-29, 2014, Centre de recherces mathemématiques, Montréal, Canada

* From Macdonald Processes to Hecke Algebras and Quantum Integrable Systems , Institut Henri Poincaré, May 26-30, 2014, Paris, France


Miscellaneous:

* Students: para los cursos, véase LABMAT (intranet).

* Mathematics Colloquium UC: For talks from 2013 until 2017. For recent talks click here.































































































































































web analytics
s