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Abstract. We study the thermodynamic formalism for particular types of sub-additive sequences
on a class of subshifts over countable alphabets. The subshifts we consider include factors of
irreducible countable Markov shifts under certain conditions. We show the variational principle
for topological pressure. We also study conditions for the existence and uniqueness of invariant
ergodic Gibbs measures and the uniqueness of equilibrium states. As an application, we extend
the theory of factors of (generalized) Gibbs measures on subshifts on finite alphabets to that on
certain subshifts over countable alphabets.

1. Introduction

Thermodynamic formalism is an area of ergodic theory which addresses the problem of choosing
relevant invariant measures among the, sometimes very large, set of invariant probabilities. This
theory was brought from statistical mechanics into dynamics in the early seventies by Ruelle and
Sinai among others [Ru, Si]. The powerful formalism developed to study equilibrium of systems
consisting of a large number of particles (e.g. gases) has been surprisingly efficient to describe
certain dynamical systems that exhibit complicated behavior. The theory has been developed in
several directions. Originally the dynamical system was assumed to be defined on a compact set and
the observable was a continuous function. Both assumptions have been relaxed over the years. For
example, Gurevich [Gu1, Gu2, GS], Mauldin and Urbański [MU1, MU2] and Sarig [S1, S3, S3] have
developed thermodynamic formalism in the non-compact setting of countable Markov shifts. Since
there exists a wide range of relevant dynamical systems that can be coded with countable Markov
shifts, this theory has had relevant applications. Other extension of thermodynamical formalism to
non-compact settings was developed by Pesin and Pitskel [PePi]. In that case, the system is not
assumed to have any Markov structure but it has to be the restriction of a continuous map defined
on a compact set. Also, the observables have to have continuous extensions (therefore observables
are assumed to be bounded). In a different direction, the theory was extended to consider not only
a single observable but instead a sequence of them. Certain additivity assumptions were required
on the sequence in order for the ergodic theorems to hold. This circle of ideas was called non-
additive thermodynamic formalism. It was originally formulated by Falconer [F1] with the purpose
of applying it in the study of the dimension theory of non-conformal dynamical systems. Ever
since, different additivity assumptions have been considered in the sequence. For example, Barreria
[B1, B2, B3] developed the theory assuming a strong additivity assumption called almost-additivity.
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Mummert [M] also obtained results in this direction. Cao, Feng and Huang [CFH] studied the
case in which the sequence was only assumed to be sub-additive. More generally, Feng and Huang
[FH] extended the theory to handle asymptotically sub-additive sequences. Over the last few years,
thermodynamic formalism for non-compact dynamical systems and sequences of observables has
been developed. Iommi and Yayama [IY1, IY2] have studied thermodynamic formalism for almost-
additive sequences on (non-compact) countable Markov shifts. Also, Käenmäki and Reeve [KR]
studied the formalism for sequences of potentials under weaker additivity assumptions but for the
full shift over a countable alphabet.

In this paper, we further develop the theory. We consider particular types of sub-additive se-
quences on a fairly general class of subshifts. We call this class the class of countable sofic shifts,
where a countable sofic shift is defined as the image of a countable Markov shift under a one-block
factor map with an additional condition (see Section 2.3). This class therefore generalizes the con-
cept of a sofic shift over a finite alphabet. We stress that this dynamical system is non-Markov
and it is defined on a non-compact space. Even in the case of a single observable, several of our
results are new, to the best of our knowledge. The types of sub-additive sequences we consider
are generalizations of continuous functions with tempered variation on subshifts satisfying the weak
specification property (see Section 2.2 for details). In Section 2, we propose a definition of the
topological pressure and compare it with the Gurevich pressure. Then we prove the corresponding
variational principle in Theorems 4.2 and 4.3 in Section 4. In particular, Section 4.2 studies a
variational principle for sequences with tempered variation defined on finitely irreducible subshifts
(see Definition 2.3) which preserve a certain finiteness property found in compact spaces. In Section
4.1, the variational principle is also studied in the case when the Bowen sequences (see Definition
2.7) are defined on countable Markov shifts which are not necessarily finitely irreducible. We see
that if the topological pressure of the sequence considered in Section 4.1 is finite, then the space
on which it is defined is finitely irreducible. Hence, this type of sequence is suitable for studying
Gibbs measures. In Section 5, we show under some assumptions the existence and uniqueness of
Gibbs measures on finitely irreducible countable sofic shifts, together with uniqueness of the Gibbs
equilibrium states (see Theorem 5.1). Our results extend those in [KR], encompassing more general
classes of sequences and far more general dynamical systems.

Differences with the work in [IY1, IY2] are discussed in Section 3.1. In particular, not every
almost-additive sequence studied in [IY1] is in the class of sequences we study here (see Example
3.2). This phenomenon is different from what is observed in the compact case, in which every
almost-additive sequence satisfies the assumptions we consider. Examples of the kinds of sequences
we study are presented and compared with almost-additive sequences in Section 3, and these are
studied especially with the variational principle in Section 4.

One of the main applications of the thermodynamic formalism studied in this article is to develop
the theory of factors of Gibbs measures on shift spaces over countable alphabets. An important
question in the area is to determine under which conditions the (generalized) Gibbs property is
preserved under a one-block factor map. For Gibbs measures for continuous functions on subshifts
over finite alphabets, this problem has been studied widely, for example, by Chazotte and Ugalde
[CU1, CU2], Kempton and Pollicott [PK], Kempton [K], Piranio [Pi], Jung [J2], Verbitskiy [V] and
Yoo [Yo]. For generalized Gibbs measures for sequences on subshifts over finite alphabets, this type
of question has been addressed by Barral and Feng [BF], Feng [Fe4] and Yayama [Y1, Y2], especially
in connection with dimension problems on non-conformal repellers. In Section 6, we address this
question in the (non-compact and non Markov) context of finitely irreducible countable sofic shifts.
Applying the results of Sections 4 and 5, in Theorem 6.1 we show that under certain conditions a
factor of a unique invariant Gibbs measure for an almost-additive sequence on a finitely irreducible
countable sofic shift is a Gibbs measure for a type of sequence we study in Section 2.2. The most
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general form of the variational principle concerning factor maps in this paper is given in Theorem
6.2. The results in Section 6 generalize some results of [Y2]. Finally, in Section 7, applications are
given to the study of some problems in dimension theory, in particular, product of matrices and the
singular value function.

2. Background

2.1. Subshifts on countable alphabets and specification properties. This section is devoted
to recall basic notions of symbolic dynamics. We discuss countable Markov shifts, factor maps and
different specification properties in this setting. For more details we refer the reader to [LM, BP].
Let (tij)N×N be a transition matrix of zeros and ones (with no row and no column made entirely of
zeros). The associated (one-sided) countable Markov shift (Σ, σ) is the set

Σ :=
{
(xn)n∈N : txn,xn+1 = 1 for every n ∈ N

}
,

together with the shift map σ : Σ → Σ defined by σ(x) = x′, for x = (xn)∞n=1, x
′ = (x′

n)
∞
n=1 with

x′
n = xn+1 for all n ∈ N. If for every (i, j) ∈ N2 the transition matrix satisfies tij = 1, then we say

that the corresponding countable Markov shift is the full shift on a countable alphabet.
An allowable word of length n ∈ N for Σ is a string i1 . . . in where tij,ij+1 = 1 for every j ∈

{1, . . . , n − 1}. For each n ∈ N, denote by Bn(Σ) the set of allowable words of length n of Σ. For
i1 . . . in ∈ Bn(Σ), we define a cylinder set [i1 . . . in] of length n by

[i1 . . . in] = {x ∈ Σ : xj = ij for 1 ≤ j ≤ n} .
We endow Σ with the topology generated by cylinder sets. This is a metrizable space. The

following metric generates the cylinder topology. Let d on Σ by d(x, x′) = 1/2k if xi = x′
i for all

1 ≤ i ≤ k and xk+1 %= x′
k+1, d(x, x′) = 1 if x1 %= x′

1, and d(x, x′) = 0 otherwise. We stress that, in
general, Σ is a non-compact space.

We can drop the Markov structure and define subshifts on countable alphabets. Let X be a closed
subset of the full shift Σ. If X is σ-invariant, that is σ(X) ⊆ X, then we say that (X,σ|X) is a
subshift and we write σX instead of σ|X . In particular, if X is not a subset of the full shift on a
finite alphabet, then we say that (X,σX) is a subshift on a countable alphabet. We also write (X,σ)
for simplicity. The set X is endowed with the topology induced by Σ. In this context the set of
allowable words of length n of X is defined by

Bn(X) := {i1 . . . in ∈ Bn(Σ) : [i1 . . . in] ∩X %= ∅} .
For an allowable word w = i1 . . . in we denote by |w| its length, |i1 . . . in| = n. Given a subshift
(X,σ) on a countable alphabet, we now define the language of X. The word of length n = 0 of X is
called the empty word and it is denoted by ε. The language of X is the set B(X) =

⋃∞
n=0 Bn(X),

i.e., the union of all allowable words of X and the empty word ε.
We now define several notions of specification that generalize the one first introduced by Bowen

[Bo] with the purpose of proving that there exits a unique measure of maximal entropy for a large
class of compact subshifts. Our definitions are given in terms of the language of X.

Definition 2.1. We say that a subshift (X,σ) on a countable alphabet is irreducible if for any
allowable words u, v ∈ B(X), there exists an allowable word w ∈ B(X) such that uwv ∈ B(X).

Definition 2.2. We say that a subshift (X,σ) on a countable alphabet has the weak specification
property if there exists p ∈ N such that for any allowable words u, v ∈ B(X), there exist 0 ≤ k ≤ p
and w ∈ Bk(X) such that uwv ∈ B(X). If in addition, k = p for any u and v, then X has the strong
specification property. We call such p a weak (strong, respectively) specification number.

Definition 2.3. A subshift (X,σ) is finitely irreducible if there exist p ∈ N and a finite subset
W1 ⊂

⋃p
n=0 Bn(X) such that for every u, v ∈ B(X), there exists w ∈ W1 such that uwv ∈ B(X).
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Definition 2.4. A subshift (X,σ) is finitely primitive if there exist p ∈ N and a finite subset
W1 ⊂ Bp(X) such that for every u, v ∈ B(X), there exists w ∈ W1 such that uwv ∈ B(X).

Remark 2.1. Note that the weak specification property does not imply topologically mixing. How-
ever, if (Σ, σ) is a topologically mixing subshift of finite type defined on a finite alphabet with the
weak specification property, then it has the strong specification property (see [J1, Lemma 3.2]). The
class of general shifts on finite alphabets with the weak specification property include irreducible
sofic shifts (see [J1] and Definition 2.11).

As it is clear from the definition, the notion of finitely primitive (see Definition 2.4) is essentially
the same as that of specification introduced by Bowen [Bo] in a non-compact symbolic setting. There
is a closely related class of countable Markov shifts studied by Sarig [S3].

Definition 2.5. A countable Markov shift (Σ, σ) is said to satisfy the big images and preimages
property (BIP property) if there exists {b1, b2, . . . , bn} in the alphabet S such that for every a ∈ S
there exist i, j ∈ {1, . . . , n} such that tbiatabj = 1.

Remark 2.2. If the countable Markov shift (Σ, σ) satisfies the BIP property, then for every symbol
in the alphabet, say a, there exist bi, bj ∈ {b1, b2, . . . , bn} such that bia and abj are allowable words.
Note, however, that a system with the BIP property can have more than one transitive component.
Indeed, if Σ is the disjoint union of two full shifts on countable alphabets, then it satisfies the BIP
property and it has two transitive components.

Nevertheless, as noted by Sarig [S3, p.1752] and by Mauldin and Urbański [MU2], under the
following dynamical assumption both notions coincide. A countable Markov shift is topologically
mixing, i.e., for each pair x, y ∈ N, there exists N ∈ N such that for every n > N there is an
allowable word i1 . . . in ∈ Bn(Σ) such that i1 = x, in = y.

Lemma 2.1. If (Σ, σ) is a topologically mixing countable Markov shift with the BIP property, then
it is finitely primitive.

Proof. Let a, c ∈ A be two symbols of the alphabet. Since (Σ, σ) is BIP, there exist bi, bj ∈
{b1, b2, . . . , bn} in the alphabet, such that

abi , bjc

are allowable words. Since (Σ, σ) is topologically mixing, for each pair bl, br ∈ {b1, b2, . . . , bn}, there
exists Nl,r ∈ N such that for every k > Nl,r there is a word wk

l,r ∈ Bk(Σ) such that blwk
l,rbr ∈

Bk+2(Σ). Let N := max{Nl,r : l, r ∈ {1, . . . , n}}+ 1 and consider the set

F :=
{
bjw

N
j,ibi : i, j ∈ {1, . . . , n}

}
.

Then, for any pair of allowable words u ∈ Bl(Σ), v ∈ Bm(Σ) there exists bjwN
j,ibi ∈ F such that

ubjwN
j,ibiv is an allowable word. The result now follows since every word in F has length N +2. !

Remark 2.3. Note that if (Σ, σ) satisfies the strong specification property then it is topologically
mixing and has infinite entropy. On the other hand, if (Σ, σ) satisfies the weak specification property
then it is irreducible and has infinite entropy (see Section 4).

2.2. Pressure for a class of sequences of continuous functions. In this section, we provide two
definitions of pressure of sequences of continuous functions defined on non-compact subshifts. We
prove that under fairly general assumptions both coincide. Let (X,σ) be a subshift on a countable
alphabet. For each n ∈ N, let fn : X → R+ be a continuous function and F = {log fn}∞n=1 a
sequence of continuous functions on X. In order to develop thermodynamic formalism and to be
able to apply ergodic theorems, additivity assumptions are required on the sequences.
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Definition 2.6. A sequence F = {log fn}∞n=1 of continuous functions on X is called almost-additive
if there exists a constant C ≥ 0 such that for every n,m ∈ N, x ∈ X, F satisfies

(2.1) fn+m(x) ≤ fn(x)fm(σnx)eC

and

(2.2) fn(x)fm(σnx)e−C ≤ fn+m(x).

In particular, F is called sub-additive if F satisfies (2.1) with C = 0 and F is additive if F
satisfies (2.1) and (2.2) with C = 0. Note that we have (2.1) if and only if the sequence F + C =
{log(eCfn)}∞n=1 is sub-additive. We also assume the following regularity condition.

Definition 2.7. A sequence F = {log fn}∞n=1 of continuous functions on X is called a Bowen
sequence if there exists M ∈ R+ such that

(2.3) sup{Mn : n ∈ N} ≤ M,

where

Mn = sup

{
fn(x)

fn(y)
: x, y ∈ X,xi = yi for 1 ≤ i ≤ n

}
.

More generally, if Mn < ∞ for all n ∈ N and limn→∞(1/n) logMn = 0, then we say that F has
tempered variation. Without loss of generality, we assume Mn ≤ Mn+1 for all n ∈ N.

Remark 2.4. Definition 2.7 extends a notion introduced by Walters [W] when developing thermo-
dynamic formalism. We say that a continuous function f : X → R belongs to the Bowen class if
the sequence {log eSn(f)}∞n=1, where (Snf)(x) = f(x)+ f(σ(x))+ · · ·+ f(σn−1(x)) for each x ∈ X is
a Bowen sequence. The Bowen class contains the functions of summable variations and the Bowen
sequences are a generalization of functions in the Bowen class (see [B2, IY1]).

We now list several assumptions we will use throughout the paper. These are hypothesis on both
the system (X,σ) and the sequence F .

(C1) The sequence F + C is sub-additive for some C ≥ 0.
(C2) There exist p ∈ N and D > 0 such that given any u ∈ Bn(X), v ∈ Bm(X), n,m ∈ N, there

exists w ∈ Bk(X), 0 ≤ k ≤ p such that

sup{fn+m+k(x) : x ∈ [uwv]} ≥ D sup{fn(x) : x ∈ [u]} sup{fm(x) : x ∈ [v]}.

(C3) There exists a finite set W ⊂
⋃p

k=0 Bk(X) consisting of elements w for which the property
(C2) holds.

(C4) Z1(F) :=
∑

i∈N sup{f1(x) : x ∈ [i]} < ∞ .

In addition, we consider in Section 4.2 sequences satisfying the following weaker condition.

(D2) There exist p ∈ N and a positive sequence {Dn,m}(n,m)∈N×N such that given any u ∈
Bn(X), v ∈ Bm(X), n,m ∈ N, there exists w ∈ Bk(X), 0 ≤ k ≤ p such that

sup{fn+m+k(x) : x ∈ [uwv]} ≥ Dn,m sup{fn(x) : x ∈ [u]} sup{fm(x) : x ∈ [v]},

where limn→∞(1/n) logDn,m = limm→∞(1/m) logDn,m = 0. Without loss of generality, we
assume that Dn,m ≥ Dn,m+1 and Dn,m ≥ Dn+1,m.

(D3) There exists a finite set W ⊂
⋃p

k=0 Bk(X) consisting of elements w for which the property
(D2) holds.

If a sequence F on X satisfies (C2) ((D2), respectively) with w ∈ Bp(X) for all w, then we say
that F on X satisfies (C2) ((D2), respectively) with the strong specification.
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Remark 2.5. Given a pair u ∈ Bn(X), v ∈ Bm(X), n,m ∈ N, if (C2) holds when w = ε, then we ob-
tain that uv is an allowable word and sup{fn+m(x) : x ∈ [uv]} ≥ D sup{fn(x) : x ∈ [u]} sup{fm(x) :
x ∈ [v]}. In particular, it is easy to see that if (X,σ) is a subshift on a countable alphabet and F is
a Bowen sequence on X satisfying (C1) and (C2), then W = {ε} in (C3) if and only if (X,σ) is the
full shift on a countable alphabet and F is almost-additive on the full shift. The case when F is an
almost-additive Bowen sequence on the full shift has been studied in [IY1].

Remark 2.6. Note that if conditions (C2) or (D2) are satisfied then (X,σ) has the weak specification
property. Moreover, if conditions (C3) or (D3) are satisfied then (X,σ) is finitely irreducible.

We can now give the definitions of pressure.

Definition 2.8. Let (X,σ) be an irreducible subshift on a countable alphabet and F = {log fn}∞n=1

a sequence of continuous functions on X with tempered variation satisfying (C1). Define Zn(F) by

Zn(F) :=
∑

i1...in∈Bn(X)

sup {fn(x) : x ∈ [i1 . . . in]}

and the topological pressure of F by

(2.4) P (F) := lim sup
n→∞

1

n
logZn(F),

if lim supn→∞(1/n) logZn(F) exists, including possibly ∞ and −∞.

It is clear that if Z1(F) < ∞ then sub-additivity of the sequence F + C implies that P (F) =
limn→∞(1/n) logZn(F) and −∞ ≤ P (F) < ∞. We will see in Section 4 that if Z1(F) = ∞, under
certain additional assumptions on (X,σ) and F , we obtain P (F) = ∞. The variational principal is
studied for such sequences F in Section 4.

Remark 2.7. The topological pressure in Definition 2.8 is a natural extension of the classical
definition of pressure for compact subshifts. This definition was later extended by Mauldin and
Urbański [MU1] for countable Markov shifts satisfying the finitely irreducible condition. This notion
of pressure was also extended for sequences of regular functions defined on subshifts of finite type by
Barreira [B1, B2, B3], Falconer [F1], Feng [Fe1, Fe2, Fe3] and Cao, Feng and Huang [CFH] among
others. Actually, assumption (C2) was introduced by Feng [Fe3] while studying thermodynamic
formalism for potentials related to product of matrices and appeared also in the study of dimension
of non-conformal repellers [Fe4, Y1]. Moreover, when (X,σ) is a subshift on a finite alphabet, Feng
[Fe4] studied thermodynamic formalism for the class of sequences which satisfies (C1) and (C2) (see
Theorem 5.2). Note that in this case (C3) and (C4) are automatically satisfied by compactness.
Käenmäki and Reeve [KR] extended the work of Feng [Fe3, Fe4] to the full shift on a countable
alphabet. They studied thermodynamic formalism for sequences of potentials defined on the full
shift satisfying what they called quasi multiplicative property. This assumption on the sequences
used in [KR] is equivalent to assume conditions (C1), (C2) with w ∈

⋃p
k=1 Bk(X), and (C3) with

W ⊂
⋃p

k=1 Bk(X) on a Bowen sequence on the full shift. In Section 3.1, we discuss the differences
between almost-additivity and conditions (C2) and (D2).

Next we define the Gurevich pressure. Throughout the paper, we identify the set of a countable
alphabet with N.

Definition 2.9. Let (X,σ) be an irreducible subshift on a countable alphabet and F = {log fn}∞n=1

a sequence of continuous functions on X with tempered variation satisfying (C1) and (D2). For
a ∈ N, define

Zn(F , a) :=
∑

x:σnx=x

fn(x)χ[a](x),
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where χ[a](x) is a characteristic function of the cylinder [a]. The Gurevich pressure of F on X,
denoted by PG(F), is defined by

(2.5) PG(F) := lim sup
n→∞

1

n
logZn(F , a),

if lim supn→∞(1/n) logZn(F , a) is independent of a ∈ N.

In Proposition 2.1, we will study the definition of Gurevich pressure PG(F) when (X,σ) is a
countable Markov shift and Z1(F) < ∞. If Z1(F) = ∞, under certain assumptions on (X,σ) and
F , we obtain P (F) = PG(F) = ∞ (see Section 4). The definition is also studied in Section 4.2 when
(X,σ) is a finitely irreducible countable sofic shift.

Remark 2.8. The Gurevich entropy was first introduced by Gurevich for countable Markov shifts.
This notion was later extended by Sarig [S1] where he defines the Gurevich pressure of regular po-
tentials defined on topologically mixing countable Markov shifts. In [FFY, Section 1], the definition
was extended to a certain type of irreducible countable Markov shift. It was shown by Dougall and
Sharp in [DS, Section 3] that the definition could be extended to topological transitive shifts on
countable alphabets for regular potentials. In all these cases, it was shown that the definition does
not depend on the symbol a chosen. The Gurevich pressure was defined and studied for almost-
additive sequences on topologically mixing countable Markov shifts by Iommi and Yayama [IY1].
We stress that the definition given here extends both the class of sequences of potentials and the
class of shifts (satisfying the weak specification) previously considered in the literature.

It was shown by Mauldin and Urbański [MU2] and by Sarig [S3] that when restricted to topologi-
cally mixing countable Markov shifts satisfying the BIP property for a regular potential, Definitions
2.8 and 2.9 coincide. The next result extends this observation to countable Markov shifts satisfying
the weak specification property and to sequences of functions satisfying mild additivity assumptions.

Proposition 2.1. Let (X,σ) be a countable Markov shift and F = {log fn}∞n=1 a sequence on X
with tempered variation satisfying (C1) and (D2). If P (F) < ∞, then

(2.6) P (F) = PG(F).

If F satisfies (D2) with the strong specification, then lim sup in (2.5) can be replaced by lim.

Proof. First we observe that P (F) < ∞ if and only if Z1(F) < ∞ (see Proposition 4.2). Let a ∈ N
be fixed and cn := x1 . . . xn ∈ Bn(X). By assumption (D2) there exist allowable words w1, w2 with
0 ≤ |w1|, |w2| ≤ p, such that aw1x1 . . . xnw2a is an allowable word of length n + 2 + |w1| + |w2|
satisfying

sup{fn+2+|w1|+|w2|(x) : x ∈ [aw1cnw2a]}
≥ D1,nD1+p+n,1 sup{fn(x) : x ∈ [cn]}(sup{f1(x) : x ∈ [a]})2.

Since F has tempered variation, for any x ∈ [aw1cnw2a] we have that

sup{fn+2+|w1|+|w2|(x) : x ∈ [aw1cnw2a]}
≤ Mn+2p+2fn+2+|w1|+|w2|(x) ≤ Mn+2p+2fn+1+|w1|+|w2|(x) sup{f1(x) : x ∈ [a]}eC .

Since x̄ = (aw1cnw2)∞ = (aw1cnw2aw1cnw2aw1cnw2 . . . ) is a periodic point with period n+ |w1|+
|w2|+ 1, we obtain

fn+|w1|+|w2|+1(x̄) ≥
D1,nD1+p+n,1e−C

Mn+2p+2
sup{fn(x) : x ∈ [cn]} sup{f1(x) : x ∈ [a]}.
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Note that since F has tempered variation we have that sup{f1(x) : x ∈ [a]} is bounded. Setting
dn = (D1,nD1+p+n,1 sup{f1(x) : x ∈ [a]})/(eCMn+2p+2) and summing over all allowable words
cn = x1 . . . xn ∈ Bn(X), we obtain

(2.7)
n+2p+1∑

i=n+1

Zi(F , a) ≥ dnZn(F) > 0.

Hence, there exists n+ 1 ≤ in ≤ n+ 2p+ 1 such that Zin(F , a) ≥ (dnZn(F))/(2p+ 1). Therefore,

1

in
logZin(F , a) ≥ 1

n+ 2p+ 2

(
log

1

2p+ 1
+ log dn + logZn(F)

)
.

Thus

(2.8) lim sup
n→∞

1

in
logZin(F , a) ≥ P (F).

Since Zin(F , a) ≤ Zin(F) for all in and a is arbitrary, (2.8) implies (2.6).
Next we show the second part. If F satisfies (D2) with the strong specification, we obtain for all

n ∈ N
Zn+2p+1(F , a) ≥ dnZn(F) > 0.

Thus similar arguments above imply that

lim sup
n→∞

1

n
logZn(F , a) = lim inf

n→∞

1

n
logZn(F , a).

In particular one can take a limit instead of a limsup in the definition of Gurevich pressure. !

Remark 2.9. In Section 4, we obtain (2.6) when Z1(F) = ∞ under certain assumptions on (X,σ)
and F . In Section 4.2, for a sequence F on a finitely irreducible countable sofic shift we establish
conditions ensuring P (F) = PG(F).

Remark 2.10 (Entropy). A particular case of the definitions considered in Section 2.2 is when the
sequence F = {log fn}∞n=1 is such that for every n ∈ N we have that log fn = 0. In this case we denote
F = 0. The numbers P (0) and PG(0) are called the entropy and the Gurevich entropy respectively.
It is well known that for a compact irreducible sofic shift (see Definition 2.11) both notions coincide
(see [LM, Theorem 4.3.6]). However, even for topologically mixing countable Markov shifts these
two notions can be different, we can have PG(0) < P (0). In Proposition 2.1, fairly general conditions
are obtained so that we can still have an equality P (0) = PG(0) in the non-compact setting. We use
the following notation P (0) = h(σ) and PG(0) = hG(σ).

2.3. Factor maps. The goal of this section is to study certain subshifts which are images of count-
able Markov shifts under factor maps. The following class of maps will play an important role in
this article.

Definition 2.10. Let (X,σX) and (Y, σY ) be subshifts on countable alphabets. A one-block code is a
map π : X → Y for which there exists a function, denoted again by π, π : B1(X) → B1(Y ) such that
(π(x))i = π(xi) for all i ∈ N. For u = x1 . . . xk ∈ Bk(X), k ∈ N, we denote π(x1) . . . π(xk) ∈ Bk(Y )
by π(u). A map π : X → Y is a factor map if it is continuous, surjective and satisfies π◦σX = σY ◦π.
For a one-block factor map π : X → Y where X is an irreducible countable Markov shift, let
v ∈ Bk(Y ). We denote by π−1(v) the set of allowable words u of length k of X such that π(u) = v
and by |π−1(v)| the cardinality of the set. Throughout the paper, we only consider one-block factor
maps π : X → Y such that |π−1(i)| < ∞ for any i ∈ N. Hence for each k ∈ N, v ∈ Bk(Y ), we have
|π−1(v)| < ∞.
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Next we show that, in some cases, the image of a countable Markov shift under a one-block code
is a subshift. In general, the image of a shift space on a countable alphabet under a sliding block
code is not closed and hence it is not a subshift (see [LM]).

Lemma 2.2. Let (X,σX) be a subshift on a countable alphabet and (Σ, σ) the full shift on a
countable alphabet. Let π : X → Σ be a one-block code such that |π−1(i)| < ∞ for each i ∈ N. Let
Y := π(X). Then (Y, σY ) is a subshift on a countable alphabet.

Proof. It is easy to see that Y is invariant and we show that Y is closed. For m ∈ N, let y(m) =

{y(m)
n }∞n=1 ∈ Y . Let {y(m)}∞m=1 be a sequence in Y converging to y = {yi}∞i=1. We show that

y ∈ Y . Since Y is the image of X under π, for each m ∈ N, we can pick an x(m) ∈ X such that

π(x(m)) = y(m) and let x(m) = {x(m)
n }∞n=1. Fix l ∈ N. Since {y(m)}∞m=1 converges to y ∈ Y , there

exists M ∈ N such that d(y(m), y) < 1/2l for all m ≥ M . Then we have y(m)
i = yi for all m ≥ M ,

1 ≤ i ≤ l + 1. Note that π−1(y(M)
i ) is a finite set for each 1 ≤ i ≤ l + 1. Consider the sequence

{x(m)}∞m=M . Then we have x(m)
i ∈ π−1(y(M)

i ) for 1 ≤ i ≤ l + 1,m ≥ M . Since there are finitely

many symbols in π−1(y(M)
1 ), there exists x∗

1 ∈ π−1(y(M)
1 ) such that x∗

1 is the initial symbol of x(m),
for infinitely many m ≥ M . Now we extract a subsequence {x1,n}∞n=1 of sequences with the initial
symbol x∗

1 from {x(m)}∞m=M . Define {x0,n}∞n=1 := {x(m)}∞m=M . Repeating this process, for each

1 ≤ i ≤ l+1, there exist x∗
i ∈ π−1(y(M)

i ) and a sequence {xi,n}∞n=1 of sequences with the i th symbol
x∗
i such that {xi,n}∞n=1 is a subsequence of {xi−1,n}∞n=1. We define x∗

i for i = l + i,i ≥ 2 similarly.

Given l + 1, there exists M1 such that d(y(m), y) < 1/2l+1 for all m ≥ M1. Then we have y(m)
i = yi

for all m ≥ M1, 1 ≤ i ≤ l+2. Consider the sequence {zl+1,n}∞n=1 := {xl+1,n}∞n=1∩{xm}∞m=M1
. Since

there are finitely many symbols in π−1(y(M1)
l+2 ), there exists x∗

l+2 ∈ π−1(y(M1)
l+2 ) such that x∗

l+2 is the

(2 + l) th symbol of {zl+1,n}∞n=1 for infinitely many n. Now we extract a subsequence {xl+2,n}∞n=1

of sequences with the (2 + l) th symbol x∗
l+2 from {zl+1,n}∞n=1. Since |π−1(k)| < ∞ for each k ∈ N,

by repeating this process, for each i ≥ 2 there exist x∗
l+i ∈ π−1(yl+i) and a sequence {xl+i,n}∞n=1

with the i th symbol x∗
i , each of which is a subsequence of {xl+i−1,n}∞n=1. Define x∗ = {x∗

i }∞i=1. By
a diagonal argument, it is clear that the sequence {xl+i,i}∞i=1 converges to x∗. Since X is closed, we
obtain that x∗ ∈ X. Then π(x∗) = {π(x∗

i )}∞i=1 = {yi}∞i=1 = y. Hence Y is closed.
!

In Lemma 2.2, if X is a countable Markov shift, then π : X → Y is a one-block factor map. Hence
we find a class of subshifts which generalize countable Markov shifts. Recall that if (X,σ) is a finite
state Markov shift, then the image of X under a one-block factor map is a sofic shift [LM, BP]. In
the following, we generalize this definition to the case when (X,σ) is a countable Markov shift.

Definition 2.11. A countable sofic shift is a subshift on a countable alphabet which is the image of
a countable Markov shift under a one-block factor map π such that |π−1(i)| < ∞ for each i ∈ N. In
particular, an irreducible countable sofic shift is the image of an irreducible countable Markov shift.

Remark 2.11. Note that an irreducible subshift is defined in Definition 2.1. In Definition 2.11, in
order for Y to be an irreducible countable sofic shift, we additionally assume that it is an image of
an irreducible countable Markov shift.

It is well known that if X and Y are subshifts on finite alphabets such that there exists a factor
map π : X → Y , then h(X) ≥ h(Y ). In the non-compact case, this is in general not true (see the
discussion in [LM, Section 13.9] ). However, the next lemma shows that under suitable assumptions
this property still holds.

Lemma 2.3. Let (X,σX) and (Y, σY ) be topologically mixing countable Markov shifts and π : X →
Y a one-block factor map such that |π−1(n)| < ∞ for every n ∈ N. Then h(σX) ≥ h(σY ).
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Proof. Recall that the Gurevich entropy satisfies the following approximation property by compact
sets [Gu1, Gu2]

hG(σX) = sup{h(σX |K) : K ⊂ X compact and invariant}
= sup{h(σX |ΣK ) : ΣK ⊂ X topologically mixing finite Markov shift}.

Since for every n ∈ N we have that |π−1(n)| < ∞, for every ΣK ⊂ Y topologically mixing finite
Markov shift we have that π−1(ΣK) is a compact subshift of X. Therefore, by [Kit, Proposition
4.16] we have that

hG(σX |π−1(ΣK)) ≥ hG(σY |ΣK ).

The result now follows. !

3. Examples

In this section, we study the types of sequences introduced in 2.2 and present some examples.

3.1. Differences between the (C2) condition and almost-additivity. This section is devoted
to study the relations and differences between the additivity assumptions we have considered. That
is, we establish relations between almost-additivity and conditions (C2) and (D2) introduced in
Section 2.2. The results depend upon the combinatorial structure of the shifts.

Remark 3.1. If (X,σ) is an irreducible Markov shift defined on a finite alphabet (compact), then
any almost-additive Bowen sequence on X satisfies (C2).

Next lemma shows that the result in Remark 3.1 also holds for a finitely irreducible subshift on
a countable alphabet. Even more, under weaker regularity assumptions it is possible to prove that
an almost-additive sequence satisfies condition (D2).

Lemma 3.1. Let (X,σ) be a finitely irreducible subshift on a countable alphabet and G = {log gn}∞n=1

an almost-additive sequence on X with tempered variation. Then G satisfies (C1), (D2) and (D3).
If G is an almost-additive Bowen sequence on X, then it satisfies (C1), (C2) and (C3).

Proof. Since (X,σ) is a finitely irreducible subshift on a countable alphabet, there exist p ∈ N and
a finite set W1 ⊂

⋃p
i=0 Bi(X) such that for any n,m ∈ N and u ∈ Bn(X), v ∈ Bm(X) there exists

w ∈ W1 such that uwv is an allowable word. Since W1 is a finite set and G has tempered variation,
there exists Q1 > 0 such that

sup
w∈W1,|w|≥1

{
g|w|(y) : y ∈ [w]

}
> Q1.

For n ∈ N, let Mn is defined as in Definition 2.7. Let x ∈ [uwv], where |w| = k ≥ 1. Then

(3.1) gn+m+k(x) ≥ e−Cgn(x)gk(σ
nx)gm(σk+nx) ≥ e−CQ1

Mp
gn(x)gm(σk+nx).

Now consider a pair u ∈ Bn(X), v ∈ Bm(X) such that uv is an allowable word. If x ∈ [uv], then
we obtain gn+m(x) ≥ e−Cgn(x)gm(σnx). Let Q = min{Q1, 1}. Then (D2) holds in particular for p
equal to the same p that appears in the specification property and we obtain the result by setting
Dn,m = (e−CQ)/(MpMnMm) in (D2) and W = W1 in (D3). If the sequence G is an almost-additive
Bowen sequence, the same argument replacing Mp,Mn and Mm by M yields the desired result. !
Lemma 3.2. Let (X,σ) be a subshift on a countable alphabet, G = {log gn}∞n=1 an almost-additive
sequence on X with tempered variation, and F = {log fn}∞n=1 a sequence on X satisfying (C1),(D2)
and (D3). Define H := {log(fn/gn)}∞n=1. Then H satisfies (C1),(D2) and (D3).

Proof. The proof is straightforward. We use the similar approach as in Lemma 3.1. !
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Example 3.1. A continuous function on a finitely irreducible subshift with tempered
variation. In this example, we show that the the formalism developed in this article generalizes re-
sults concerning continuous potentials satisfying mild regularity assumptions. Let f be a continuous
function defined on a finitely irreducible subshift X. Denote by

An := sup {|(Snf)(x)− (Snf)(y)| : xi = yi, 1 ≤ i ≤ n} .

We say that f has tempered variation if An < ∞ for all n ∈ N and limn→∞(1/n)An = 0. We remark
that sometimes (see for example [FFY]) the definition of tempered variation is given without the
finiteness assumption An < ∞. We stress that in this paper we always do assume finiteness.

Let f be a continuous function on a finitely irreducible subshift X with tempered variation.
Following the procedure described in Remark 2.4, for each n ∈ N, define fn(x) = e(Snf)(x) and
F = {log fn}∞n=1. The sequence F is additive. Moreover, by Lemma 3.1, F satisfies (D2) and (D3).

Example 3.2. An almost-additive sequence on a countable Markov shift which does not
satisfy (C2). Let A be a transition matrix on a countable alphabet defined by

A =





1 0 0 1 0 0 1 . . .
0 1 1 1 0 0 0 . . .
0 1 1 1 0 0 0 . . .
1 1 1 1 0 0 0 . . .
0 0 0 0 1 1 1 . . .
0 0 0 0 1 1 1 . . .
1 0 0 0 1 1 1 . . .
...

...
...

...
...

...
...

. . .





and consider the countable Markov shift (X,σ) determined by A (see Figure 1). Let {λn}∞n=1 be a
sequence of real numbers such that λn ∈ (0, 1) and

∑∞
j=1 λj < ∞. Let {log cn}∞n=1 be an almost-

additive sequence of real numbers, that is, there exists a constant C > 0 such that

e−Ccncm ≤ cn+m ≤ eCcncm.

For n ∈ N, define gn : Σ → R by

gn(x) = cnλi1λi1 · · ·λin , for x ∈ [i1 . . . in],

and let G = {log gn}∞n=1. These sequences have been studied in [IY1, Example 1] when defined on
the full shift.

1 2 3 4 5 6 7 · · ·

Figure 1. The graph defining X in Example 3.2

Lemma 3.3. The sequence G = {log gn}∞n=1 defined on X is an almost-additive Bowen sequence.
However, it does not satisfy (C2).
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Proof. It is clear that G is an almost-additive Bowen sequence. Observe that (X,σ) is topologically
mixing and that 3 is a strong specification number and, moreover, X is not finitely irreducible.

Claim 3.1. Let (X,σ) be a subshift on a countable alphabet and F = {log fn}∞n=1 a Bowen sequence
on X satisfying (C1) and (C2). Let w ∈

⋃p
i=1 Bi(X) be an allowable word from (C2). Then there

exists C ′ > 0 such that for any w of length k, we have sup{fk(x) : x ∈ [w]} ≥ C ′.

Proof. Since (C2) is satisfied, given u ∈ Bn(X), v ∈ Bm(X), there exist 0 ≤ k ≤ p and w =
w1 . . . wk ∈ Bk(X) with the property

(3.2) sup{fn+m+k(x) : x ∈ [uwv]} ≥ D sup{fn(x) : x ∈ [u]} sup{fm(x) : x ∈ [v]}.

We consider only uwv with the length k of w ≥ 1. For any x ∈ [uwv], it is a consequence of (3.2),
(C1) and the Bowen property of F that,

Me2Cfn(x)fk(σ
nx)fm(σk+nx) ≥ Dfn(x)fm(σk+nx).

Hence

sup{fk(x) : x ∈ [w]} ≥ D

Me2C
= C ′.

!

Assume by way of contradiction that the sequence G satisfies (C2) for some p ∈ N. Consider the
symbol 3 and 3n for some n ∈ N. To connect 3 and 3n, the symbol 3n+ 1 must be passed through.
Suppose w = w1 . . . wk is a word of length k ≤ p such that 3w(3n) is allowable and satisfies (C2).
Then 3n+ 1 must appear in some wi, 1 ≤ i ≤ k. Clearly k ≥ 1. Since λj is bounded above by some
constant C ′′ > 1 for all j ∈ N, we obtain

sup{gk(x) : x ∈ [w]} ≤ max
1≤k≤p

{cp}C ′′p−1
λ3n+1.

Applying Claim 3.1, λ3n+1 is bounded below by a constant for all n ∈ N. However by the construction
of λj , limn→∞ λ3n+1 = 0. This contradiction proves the lemma. !

Example 3.3. A sequence satisfying (C1),(C2) and (C3). In this example, we will make
use of the notion of factor map (see Section 2.3). Let (X,σX), (Y, σY ) be subshifts on countable
alphabets, and π : X → Y be a one-block factor map such that |π−1(i)| < ∞, for every i ∈ N. Define
φn : Y → R by φn(y) = log |π−1(y1 . . . yn)| and Φ = {log φn}∞n=1. Then Φ is a Bowen sequence.
In the next lemma, we prove that under suitable assumptions on X and Y the sequence Φ satisfies
(C1), (C2) and (C3). Let εX and εY be the empty words of X and Y respectively. By convention,
let π(εX) = εY .

Lemma 3.4. Let (X,σX) be a countable Markov shift, (Y, σY ) a subshift on a countable alphabet,
and π : X → Y a one-block factor map such that |π−1(i)| < ∞ for each i ∈ N. If X is finitely
irreducible, then Φ = {log φn}∞n=1 is a Bowen sequence on Y satisfying (C1),(C2) and (C3). If W1

is a finite set from Definition 2.3, then let π(W1) = {π(w) : w ∈ W1}. For any u ∈ Bn(Y ), v ∈
Bm(Y ), n,m ∈ N, there exists w′ ∈ π(W1) such that |π−1(uw′v)| ≥ (1/|W1|)|π−1(u)||π−1(v)|.

Proof. See [Fe4, Lemma 5.7] in which the above result was studied for the case when X is an
irreducible subshift on finite alphabets. This implies the result. !

Remark 3.2. The case when X is not finitely irreducible is studied in Example 3.8 in which Φ on
Y does not satisfy (C3). We also remark that in general Φ is not almost-additive (see [Y1, Y2]).
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3.2. Examples of sequences on irreducible countable sofic shifts. We provide a wide range
of examples of sequences of functions satisfying (or not) different additivity properties. Some of
these examples can only occur in non-compact settings and show some of the new phenomena that
have to be considered in the countable alphabet situation. The examples in this section come from
a construction in the theory of factor maps and will also appear in the following sections when we
study the variational principle. Let Φ be the sequence of functions as in Example 3.3.

Example 3.4. A sequence on a finitely irreducible countable Markov shift satisfying
(C1), (C2) and (C3). In this example, we construct a sequence of functions which satisfies
(C1),(C2) and (C3), but fails to be almost-additive. Let (X,σ) be a countable Markov shift deter-
mined by the transitions given by Figure 2.

Let π : N → N be the function defined by π(−i + n(n + 1)/2) = n, i = 0, . . . , n − 1 for n ∈ N
and Σ be the full shift on a countable alphabet. Define π : X → Σ by (π(x))i = π(xi) for all
i ∈ N and denote π(X) by Y . Then the map π : X → Y is a one-block factor map. Note that
since |π−1(i)| = i for i ∈ N we have that |π−1(i)| is not uniformly bounded. We stress that this
property cannot occur when X is a finite state Markov shift. X has a strong specification number
equal to 2, just by considering W = {12, 22}. Thus, the countable Markov shift Y also has a strong
specification number 2.

We first observe that Φ is not almost-additive on Y . Let A be the transition matrix for X. It
was shown in [Y1, Example 5.6] that Φ is not almost-additive on π(XA|{1,2,3}×{1,2,3}). Let k ≥ 3 be
fixed and define

ψn(y) =
φn(y)

(|π−1(y1)| · · · |π−1(yn)|)k
,

and Ψ = {logψn}∞n=1. The sequence Ψ is not almost-additive but it is sub-additive. By Lemma
3.4, condition (C2) holds with p = 2. For u ∈ Bn(Y ) and v ∈ Bm(Y ), there exists a word w ∈
{π(12), π(22)} of length 2 such that

sup{ψn+m+2(y) : y ∈ [uwv]} ≥ 1

22k+1
· sup{ψn(y) : y ∈ [u]} sup{ψm(y) : y ∈ [v]}.

Hence Ψ is a Bowen sequence on Y satisfying (C1), (C2) and (C3).

1 2 3 4 5 · · ·

Figure 2. The graph defining X in Example 3.4

Example 3.5. A sequence on a finitely irreducible countable sofic shift satisfying (C1),
(C2) and (C3). We study a general case of Example 3.4. Let (X,σX) be a finitely irreducible
countable Markov shift, (Y, σY ) a subshift, and π : X → Y be a one-block factor map. Thus, (Y, σY )
is a finitely irreducible countable sofic shift. Suppose there exist C1, C2 > 0, k ≥ 1 such that for
every i ∈ N we have

C1i
k ≤ |π−1(i)| ≤ C2i

k.

For y ∈ [y1 . . . yn], define

ψn(y) :=
φn(y)

(|π−1(y1)| · · · |π−1(yn)|)k+2
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and Ψ = {logψn}∞n=1. By Lemmas 3.2 and 3.4, the sequence Ψ is a sub-additive Bowen sequence
on Y satisfying (C1), (C2) and (C3).

Example 3.6. A sequence on a finitely irreducible countable sofic shift satisfying (C1),
(C2) and (C3). Let (X,σX) be a finitely irreducible countable Markov shift, (Y, σY ) a subshift,
and π : X → Y be a one-block factor map such that |π−1(i)| < ∞ for any i ∈ N. Thus, (Y, σY ) is a
finitely irreducible countable sofic shift. Let K > 0. For y ∈ [y1 . . . yn], we define

ψn(y) =
φn(y)

Ky1+···+yn

and let Ψ = {logψn}∞n=1. Then Ψ is a sub-additive Bowen sequence on Y satisfying (C1), (C2) and
(C3).

Example 3.7. A sequence on a finitely irreducible countable sofic shift satisfying (C1),
(C2) and (C3). Let G be defined as in Theorem 6.1 in Section 6. Then G is a Bowen sequence
defined on a finitely irreducible countable sofic shift satisfying (C1), (C2) and (C3).

Example 3.8. A sequence satisfying (C1) and (C2) but not (C3). Here we present an
example of a sequence which satisfies (C1) and (C2), but fails to be almost-additive and for which
the finiteness condition (C3) does not hold. We consider a factor map defined on a countable
Markov shift which is not finitely irreducible. Let (X,σ) be the countable Markov shift determined
by the transitions given by Figure 3. We partition the alphabet defining X in the following way:
F1 = {1}, F2 = {2, 3}, F3 = {4, 5, 6}, . . . , in general Fn consists of n symbols, such that the subshift
of X restricted to the symbols of Fn is the full shift on n symbols. Let π : N → N be the function
defined by π(a) = n if a ∈ Fn, n ∈ N and let Σ be the full shift on a countable alphabet. Define
π : X → Σ by (π(x))i = π(xi) for all i ∈ N. Let Y = π(X). Then Y is a countable Markov shift
and π : X → Y is a one-block factor map. Note that X is not finitely irreducible and that 3 is a
specification number for X. On the other hand, Y is finitely primitive with a specification number 1.
Noting that |π−1(i)| = i and |π−1(i1)| = 1, |π−1(i1)|/(|π−1(i)||π−1(1)|) is not bounded below by a
constant. Therefore the sequence Φ = {log φn}∞n=1 is not almost-additive, however it is sub-additive
by construction. Let u = u1 . . . un ∈ Bn(Y ) and v = v1 . . . vm ∈ Bm(Y ). We claim that

(3.3) |π−1(uun1v1v)| ≥| π−1(u)||π−1(v)|

and hence (C2) is satisfied. To see this, consider a preimage ū = ū1 . . . ūn of u and v̄ = v̄1 . . . v̄m
of v. Then ūn ∈ Fs and v̄1 ∈ Ft for some s, t ∈ N. Assume s %= 1 and t %= 1. Define as ∈ Fs

and at ∈ Ft such that 1as1 and 1at1 are allowable words. Then ūas1atv̄ is an allowable word of
X and π(ūas1atv̄) = uun1v1v. Similar arguments when s = 1 or t = 1 yield the same result. The
claim now follows, indeed Φ is a sub-additive Bowen sequence on Y satisfying (C2) with the strong
specification. However, (C3) is not satisfied. If we let W be the set consisting of all possible un1v1
in (3.3), then W = {i1j : i, j ∈ N}.

We observe that for any p ∈ N (C3) is not satisfied. Suppose F satisfies (C2) and (C3) and let W
be a finite set as in (C3). Clearly W %= {ε}. Observe that such a finite set W consists of allowable
words w of the following four types. If w = w1 . . . wk, for 1 ≤ k ≤ p, then w1 = 1 and wk %= 1 (which
we call Type 1), w1 %= 1 and wk = 1(Type 2), w1 = 1 and wk = 1 (Type 3), or w1 %= 1 and wk %= 1
(Type 4). Let w be an allowable word of Type 1. Then for any allowable words u, v in Y such that
uwv is allowable, we obtain |π−1(uwv)| ≤| π−1(u1)||π−1(w)||π−1(v)|. Let i ∈ N. If we take u = i
then |π−1(i)| = i and |π−1(i1)| = 1. Therefore, (C2) implies that |π−1(w)|/i ≥ D. Hence there exist
N1 ∈ N such that if i ≥ N1 then for any pair i, v, (C2) does not holds with iwv where w is of Type
1. By making similar arguments for w of Type 2, 3 and 4, there exists a pair i, j ∈ N such that (C2)
does hold by using a w from a finite set W .
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.

1 2 3 4 5 6 · · ·

Figure 3. The graph defining X in Example 3.8

4. Variational Principle

A fundamental result in thermodynamic formalism is the variational principle. It establishes a
relation between the pressure (which is defined by means of the topological structure of the system)
and the sum of the metric entropy and the integral with respect to an invariant measure (which is
defined by means of the Borel structure of the system). The relation in the variational principle for
a sequence of functions F = {log fn}∞n=1 is the following

P (F) = sup
µ∈M(X,σ)

{
hµ(σ) + lim

n→∞

1

n

∫
log fndµ : lim

n→∞

1

n

∫
log fndµ > −∞

}
,

where M(X,σ) denotes the space of σ−invariant Borel probability measures. The goal of this section
is to establish the variational principle for the types of sequences introduced in Section 2.2.

4.1. Variational principle for a countable Markov shift with the the weak specification
property without the finiteness condition (C3). The purpose of this section is to prove the
variational principle for the Bowen sequences defined on countable Markov shifts satisfying (C1)
and (C2). We do not assume the finiteness condition (C3). Hence in the proof of the approximation
property (Proposition 4.1), this condition is not assumed. However, we see in Lemma 4.4 that if the
pressure is finite, then the type of sequence we consider in this section is defined on a space with
the finiteness condition.

The following is an important technical remark (see [MU2]). Since X is an irreducible countable
Markov shift, by rearranging the set N of the symbols of X, there exists a transition matrix A for X
and an increasing sequence {kn}∞n=1 such that the matrix A|{1,...,kn}×{1,...,kn} is irreducible. Define
Akn := A|{1,...,kn}×{1,...,kn}. We will assume the following property on the sequence of functions
F = {log fn}∞n=1, where fn : X → R+ are continuous functions.

(P1) There exist an increasing sequence {ln}∞n=1 and constants D1, p1 > 0 such that for each ln
the matrix Aln is irreducible and F|XAln

satisfies (C2) with constants Dln and pln ∈ N such
that Dln ≥ D1, and pln ≤ p1 for every n ∈ N.

Lemma 4.1. If F = {log fn}∞n=1 is a Bowen sequence on an irreducible countable Markov shift X
satisfying (P1), then F satisfies (C2) and X satisfies the weak specification property.

Proof. Let u ∈ Bn(X) and v ∈ Bm(X) for n,m ∈ N. Then there exists N ∈ N such that u, v are
allowable words of XAlN

. Call Y := XAlN
. Then the Bowen property and (P1) imply that there

exists w ∈ Bk(Y ), 0 ≤ k ≤ plN ≤ p1 such that

sup{fn+m+k(x) : x ∈ [uwv]} ≥ sup{fn+m+k|Y (x) : x ∈ [uwv]}

≥ DlN sup{fn|Y (x) : x ∈ [u]} sup{fm|Y (x) : x ∈ [v]} ≥ D1

M2
sup{fn(x) : x ∈ [u]} sup{fm(x) : x ∈ [v]}.
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!
In particular, a Bowen sequence on a finitely irreducible Markov shift satisfying (C2) and (C3) is a

sequence satisfying (P1) (see Corollary 4.1). In the following propositions and lemmas, we continue
to use the notation from (P1) and Section 2.2. Let a ∈ N be a symbol of a countable alphabet. For
a compact σ-invariant subset Y of X, define Zn(F|Y , a) =

∑
y:σn(y)=y,y1=a fn|Y (y).

We first show that with the assumption (P1) the topological pressure P (F) and the Gurevich
pressure PG(F) takes ∞ when Z1(F) = ∞.

Lemma 4.2. Let (X,σ) be an irreducible countable Markov shift and F = {log fn}∞n=1 a sequence
on X with tempered variation satisfying (C1) and (P1). If Z1(F) = ∞, then P (F) = ∞. Thus,
equation (2.6) holds.

Proof. Let f ′
n(x) = eCfn(x) for all x ∈ X and F ′ = {log f ′

n}∞n=1. Then the sequence F ′ is sub-
additive and P (F) = P (F ′). Note by Proposition 2.1 that we obtain PG(F ′|Xln

, a) = P (F ′|Xln
) for

each ln. Since g has tempered variation, if Z1(F) = ∞, then given L > 0, there exists N ∈ N such
that Z1(F|XlN

) > L and thus Z1(F ′|XlN
) > LeC . Let Y := XlN . Then (P1) implies that for each

n ∈ N there exists 0 ≤ in ≤ p1(n− 1) such that

(4.1) Zn+in(F ′|Y ) ≥ (
D′

1

p1 + 1
)n−1(Z1(F ′|Y ))n,

where D′
1 = D1/eC . Since we have P (F ′) ≥ lim supn→∞(1/(n+ in)) logZn+in(F ′|Y ) = P (F ′|Y ), we

obtain that P (F ′) ≥ P (F ′|Y ) ≥ d+ (1/(p1 + 1)) log(LeC) where d = (1/(p1 + 1)) log(D′
1/(p1 + 1)).

Letting L → ∞, we obtain P (F) = P (F ′) = ∞. To see that (2.6) holds, we apply Proposition
2.1. Since PG(F|Y , a) = PG(F ′|Y , a) = P (F ′|Y ) and PG(F , a) ≥ PG(F|Y , a), the result follows by
letting L → ∞. !

The next result provides an approximation property by compact invariant sets for the pressure,
without the finiteness condition (C3). We prove this by using the Gurevich pressure.

Proposition 4.1. Let (X,σ) be an irreducible countable Markov shift. If F = {log fn}∞n=1 is a
Bowen sequence on X satisfying (C1) and (P1), then

P (F) = sup
ln,n∈N

{
P (F|XAln

)
}
,

and P (F) %= −∞.

Proof. We use similar arguments used in [IY1, Proposition 3.1]. First assume Z1(F) < ∞ and
so P (F) < ∞. Assume also that −∞ < P (F)(we show that P (F) %= −∞). Define f ′

n(x) and
F ′ as in the proof of Lemma 4.2. Then the sequence F ′ is a sub-additive Bowen sequence and
P (F) = P (F ′). Let a ∈ N be a symbol of the countable alphabet of X. Then P (F ′) = limn→∞ Bn,
where Bn = supk≥n(1/k) logZk(F ′, a) and Bn < ∞ for all n ∈ N. Let ε > 0 and fix m ∈ N such
that

(4.2)
p1
m

< ε and
1

m

∣∣∣∣log
M(p1 + 1)

D1

∣∣∣∣ < ε.

Then there exists q ∈ N, q ≥ m such that

Bm − ε <
1

q
logZq(F ′, a) ≤ Bm.

Thus,

(4.3) P (F ′) ≤ Bm <
1

q
logZq(F ′, a) + ε.
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Since q ≥ m, (4.2) holds by replacing m by q. Then Zq(F ′, a) = limn→∞ Zq(F ′|XAln
, a). Note that

{Zq(F ′|XAln
, a)}∞n=1 increases to Zq(F ′, a) monotonically. Thus there exists n1 ∈ N such that

(4.4)
1

q
logZq(F ′, a) <

1

q
logZq(F ′|XAln1

, a) + ε.

By (P1), F ′|XAln1

satisfies (C2). Let Y = XAln1
. Then Y has the weak specification property with

a specification number pY ≤ p1.

Lemma 4.3. For n,m ∈ N, there exists 0 ≤ in,m ≤ pY such that

(4.5)
(pY + 1)M

D1
Zin,m+n+m(F ′|Y , a) ≥ Zn(F ′|Y , a)Zm(F ′|Y , a).

Proof. Let n,m ∈ N be fixed. Take x, y ∈ Y such that σnx = x and σmy = y, where x1 = y1 = a.
Let x = (ax2 . . . xn−1)∞ and y = (ay2 . . . ym−1)∞. By (P1), there exist 0 ≤ k ≤ pY and an allowable
word b1 . . . bk in Y such that ax2 . . . xn−1b1 . . . bkay2 . . . ym−1 is allowable in Y satisfying (C2). Thus
z = (ax2 . . . xn−1b1 . . . bkay2 . . . ym−1)∞ ∈ Y and σn+m+kz = z.

Mf ′
n+m+k|Y (z) ≥ sup{f ′

n+m+k|Y (x) : x ∈ [ax2 . . . xn−1b1 . . . bkay2 . . . ym−1]}
≥ D1 sup{f ′

n|Y (x) : x ∈ [ax2 . . . xn−1]} sup{f ′
m|Y (x) : x ∈ [ay2 . . . ym−1]}

≥ D1f
′
n|Y (x)f ′

m|Y (y).

Therefore

M
pY∑

k=0

Zn+m+k(F ′|Y , a) ≥ D1Zn(F ′|Y , a)Zm(F ′|Y , a).

There exists 0 ≤ in,m ≤ pY such that

(pY + 1)M

D1
Zn+m+in,m(F ′|Y , a) ≥ Zn(F ′|Y , a)Zm(F ′|Y , a).

!

Settingm = n = q in Lemma 4.3, there exists 0 ≤ i1 ≤ pY such that ((pY +1)M/D1)Z2q+i1(F ′|Y , a) ≥
(Zq(F ′|Y , a))2. Applying the lemma (k − 1) times, there exist 0 ≤ i1, . . . , ik−1 ≤ pY such that

(4.6)

(
(pY + 1)M

D1

)k−1

Zkq+i1+···+ik−1(F ′|Y , a) ≥ (Zq(F ′|Y , a))k.

Now let aq = logZq(F ′|Y , a). Then

aq
q

=
log(Zq(F ′|Y , a))k

kq
≤

(k − 1) log
(

(pY +1)M
D1

)
+ logZkq+i1+···+ik−1(F ′|Y , a)

kq
.(4.7)

Since pY ≤ p1, letting k → ∞

aq
q

≤
log

(
(p1+1)M

D1

)

q
+

(
1 +

p1
q

)
lim sup
k→∞

1

kq + i1 + · · ·+ ik−1
logZkq+i1+···+ik−1(F ′|Y , a)

≤ ε+ (1 + ε)P (F ′|Y ) ≤ ε(P (F ′) + 1) + P (F ′|Y ).

Hence, using (4.3) and (4.4), we obtain

P (F ′) ≤ 2ε+ ε(P (F ′) + 1) + P (F ′|Y ).
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Next assume that Z1(F) = ∞. Then the proof of Lemma 4.2 shows the result. To show P (F) %= −∞,
observe that (4.6) and (4.7) are valid for any m, ln ∈ N if we replace q and Y by m and Xln

respectively. Hence letting k → ∞ in (4.7) implies that P (F ′) %= −∞. !

Proposition 4.2. Let (X,σ) be a subshift on a countable alphabet. If F a sequence on X with
tempered variation satisfying (C1) and (D2), then P (F) < ∞ if and only if Z1(F) < ∞.

Proof. We claim that P (F) < ∞ if and only if Zn(F) < ∞ for all n ∈ N. This gives the result by
noting that Z1(F) < ∞ if and only if Zn(F) < ∞ for all n ∈ N. It is obvious that if Zn(F) < ∞ for all
n ∈ N, then P (F) < ∞. If P (F) < ∞, then there exists N ∈ N such that Zn(F) < ∞ for all n ≥ N .
Let uN ∈ BN (X) and v1 ∈ B1(X). Then by (D2) there exist p ∈ N and w ∈ Bk(X), 0 ≤ k ≤ p, such
that uNwv1 is allowable and

sup{fN+k+1(x) : x ∈ [uNwv1]} ≥ DN,1 sup{fN (x) : x ∈ [uN ]} sup{f1(x) : x ∈ [v1]}.

Hence
p∑

i=0

ZN+i+1(F) ≥ DN,1ZN (F)Z1(F).

Since ZN (F) is bounded below by a constant, we obtain that Z1(F) < ∞ and hence Zn(F) < ∞
for all n ∈ N. !

Remark 4.1. See [MU2, Proposition 1.6] for a result related to Proposition 4.2.

Lemma 4.4. Let F be a Bowen sequence on a subshift X on a countable alphabet satisfying (C1)
and (C2). If F fails to have (C3), then P (F) = ∞.

Proof. Assume P (F) < ∞. By Claim 3.1,
∑p

i=1 Zi(F) = ∞. This is a contradiction to Proposition
4.2. !

Remark 4.2. Note that by Lemma 4.4 if P (F) %= ∞ then a Bowen sequence F satisfying (C1) and
(C2) is defined on a finitely irreducible subshift. This motivates us to study a Gibbs measure for F
(see [MU2, S3]).

The main goal of this section is to obtain the variational principle and the results of the rest of
this section will also be applied in Section 4.2.

Proposition 4.3. Let (X,σ) be a subshift on a countable alphabet and F = {log fn}∞n=1 be a
sequence of continuous functions on X with tempered variation satisfying (C1) and (D2). If P (F) <
∞, then for any µ ∈ M(X,σ) such that limn→∞(1/n)

∫
log fndµ > −∞ we have

(4.8) hµ(σ) + lim
n→∞

1

n

∫
log fndµ ≤ P (F).

Remark 4.3. Assumptions of Proposition 4.3 imply that limn→∞(1/n)
∫
log fndµ exists, and pos-

sibly −∞ (see the proof below). Note that (D2) implies that P (F) %= −∞.

Proof of Proposition 4.3. We follow the proof of [MU2, Theorem 1.4]. We have to slightly mod-
ify the proof in order to take into account of the sub-additive sequence F ′ := {log(eCfn)}∞n=1.
Since P (F) < ∞, Proposition 4.2 implies Z1(F) < ∞ and thus sup f1 < ∞. Hence we ob-
tain that

∫
(log eCf1)+dµ < ∞. Applying sub-additive ergodic theorem to F ′, we obtain that

limn→∞(1/n)
∫
log fndµ exists for any µ ∈ M(X,σ). Note by Proposition 4.2 that 0 < Zn(F) < ∞

for each n ∈ N. Using the sub-additivity of F ′, it follows that for every n,m ∈ N
1

nm

∫
log fnmdµ ≤ 1

n

∫
log fndµ+

C

n
.
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Thus

−∞ < lim sup
m→∞

1

nm

∫
log fnmdµ ≤ 1

n

∫
log fndµ+

C

n
,

and for each n ∈ N
∑

w∈Bn(X)

µ([w]) log (sup{fn(x) : x ∈ [w]}) ≥
∫

log fndµ > −∞.

For n ≥ 1, letting h(x) = −x log x, we have

−
∑

wn∈Bn(X)

µ([w]) logµ([w]) +

∫
log fndµ

≤
∑

w∈Bn(X)

µ([w]) (log(sup{fn(x) : x ∈ [w]})− logµ[w])

= Zn(F)
∑

w∈Bn(X)

sup{fn(x) : x ∈ [w]}
Zn(F)

h

(
µ([w])

sup{fn(x) : x ∈ [w]}

)

≤ Zn(F)h




∑

w∈Bn(X)

µ([w])

Zn(F)



 ≤ Zn(F)h
(
Zn(F)−1

)
= logZn(F),

where in the third inequality we use the concavity of h. Therefore, for every n ≥ 1 we have that
−
∑

w∈Bn(X) µ([w]) logµ([w]) < ∞. In particular, if we let α = {[u] : u ∈ B1(X)}, then α is a
generator for σ. Hence

hµ(σ) + lim
n→∞

1

n

∫
log fndµ ≤ lim

n→∞



− 1

n

∑

w∈Bn(X)

µ([w]) logµ([w]) +
1

n

∫
log(eCfn)dµ



 ≤ P (F).

!

Lemma 4.5. Let (X,σ) and F = {log fn}∞n=1 be defined as in Proposition 4.3. If P (F) = ∞, then
for any µ ∈ M(X,σ) such that lim supn→∞(1/n)

∫
log fndµ > −∞,

(4.9) hµ(σ) + lim sup
n→∞

1

n

∫
log fndµ ≤ P (F).

If sup f1 < ∞, then lim sup can be replaced by lim.

Proof. The result is obvious. !

To show the variational principle, we need the following variational principle for sequences on
subshifts on finite alphabets (see [CFH]).

Theorem 4.1. [CFH] Let (X,σ) be a subshift on a finite alphabet. If F = {log fn}∞n=1 is a sequence
on X with tempered variation satisfying (C1), then

P (F) = sup
µ∈M(X,σ)

{
hµ(σ) + lim

n→∞

1

n

∫
log fndµ

}
,

where P (F) is defined in Definition 2.8. Then P (F) = −∞ if and only if limn→∞(1/n)
∫
log fndµ =

−∞ for all µ ∈ M(X,σ).

In Theorem 4.1 an equilibrium measure for F (see Definition 5.1) always exists.
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Theorem 4.2. Let (X,σ) be an irreducible countable Markov shift and F = {log fn}∞n=1 be a
Bowen sequence on X satisfying (C1) and (P1). If P (F) < ∞, then

(4.10) PG(F) = P (F) = sup
µ∈M(X,σ)

{
hµ(σ) + lim

n→∞

1

n

∫
log fndµ : lim

n→∞

1

n

∫
log fndµ > −∞

}
.

In particular, if F satisfies (C2) with the strong specification, then lim sup in (2.5) of the definition
PG(F) can be replaced by lim. If P (F) = ∞, then

(4.11) PG(F) = P (F) = sup
µ∈M(X,σ)

{
hµ(σ) + lim sup

n→∞

1

n

∫
log fndµ : lim sup

n→∞

1

n

∫
log fndµ > −∞

}
.

In particular, if sup f1 < ∞, equation (4.10) holds for the case when P (F) = ∞.

Proof. First assume that P (F) < ∞. Let ε > 0. Applying Proposition 4.1, there exists a finite state
Markov shift Y such that P (F) − P (F|Y ) < ε. Let m be an equilibrium measure for F|Y . Since
m ∈ M(X,σ) and limn→∞(1/n)

∫
log fndm > −∞, we obtain

hm(σY ) + lim
n→∞

1

n

∫
log fndm

≤ sup
µ∈M(X,σ)

{
hµ(σ) + lim

n→∞

1

n

∫
log fndµ : lim

n→∞

1

n

∫
log fndµ > −∞

}
.

Thus

P (F)− ε ≤ P (F|Y ) ≤ sup
µ∈M(X,σ)

{
hµ(σ) + lim

n→∞

1

n

∫
log fndµ : lim

n→∞

1

n

∫
log fndµ > −∞

}
≤ P (F).

Hence we obtain the result. Equation (4.11) holds for P (F) = ∞ by similar arguments using Lemma
4.5. The last statement is obvious. !

Corollary 4.1. Let (X,σ) be a countable Markov shift. If F a Bowen sequence on X satisfying
(C1), (C2) and (C3), then Propositions 4.1 and 4.3, Lemma 4.5 and Theorem 4.2 hold.

Proof. It suffices to show that (P1) is satisfied. Let W be a finite set from (C3). Since X is an
irreducible countable Markov shift, let Aln be defined as in the beginning of this section. Take lq
large enough so that {1, . . . , lq} contains all the symbols that appear in W − {ε}. Then, for n ≥ q,
F|XAln

satisfies (C2) replacing D by D/M . !

Remark 4.4. (X,σ) in Corollary 4.1 is finitely irreducible by (C2) and (C3). The case when X is
the full shift on a countable alphabet has been studied by [KR].

Example 4.1. In Example 3.8, the sequence Φ defined on the countable Markov shift Y satisfies
(C1). Here we show that (P1) holds. Let Xn be the subshift of X on the symbols {F1, . . . , Fn}.
Let Yn = π(Xn). Then Yn is an irreducible finite Markov shift on {1, . . . , n}. For n ≥ 3, each Φ|Yn

satisfies (C2) with p = 3 and D = 1. Hence (P1) is satisfied. Thus Proposition 4.1 and Theorem 4.2
hold. Since (C3) is not satisfied, by Lemma 4.4, P (Φ) = PG(Φ) = ∞ and equation (4.11) holds.

Example 4.2. In Example 3.4, the sequence Ψ = {logψn}∞n=1 defined on the countable Markov
shift Y satisfies (C1), (C2) and (C3). Hence Proposition 4.1 and Theorem 4.2 hold. Since Ψ satisfies
(C2) with the strong specification, P (Ψ) = PG(Ψ) = limn→∞(1/n) logZn(Ψ, a) for all a ∈ N. Since
k ≥ 3, we obtain Z1(Ψ) =

∑
i∈N(1/|π−1(i)|k−1) ≤

∑
i∈N(1/i

k−1) < ∞. Therefore, P (Ψ) < ∞ and
equation (4.10) holds.
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4.2. Variational principle for finitely irreducible countable sofic shifts. In this section, we
prove the variational principle for sequences F with tempered variation (see Definition 2.7) on finitely
irreducible countable sofic shifts (see Definition 2.11). Therefore the space X is not a Markov shift
and it has the finiteness property. The regularity condition on F is weaker than what was assumed
in Section 4.1. Our approach here is based on the proof of [MU2, Theorem 1.2].

Let (X,σ) be an irreducible countable sofic shift. Then by Definition 2.11 there exist an irreducible
countable Markov shift (X̄, σX̄) and a one-block factor map π : X̄ → X such that |π−1(i)| < ∞
for each i ∈ N. Rearranging the set N, there is a transition matrix A for X̄ and an increasing
sequence {ln}∞n=1 such that the matrix Aln = A|{1,...,ln}×{1,...,ln} is irreducible. For each n ∈ N, let
Sln = {π(i) : 1 ≤ i ≤ ln}. Then (π(X̄Aln

), σπ(X̄Aln
)) is a sofic shift on the set Sln of finitely many

symbols. Clearly, π(X̄Aln
) ⊆ π(X̄Aln+1

) ⊂ X and N = ∪n∈NSln . We note that we can extract a

subsequence {lnj}∞j=1 such that π(X̄Alnj
) ⊂ π(X̄Alnj+1

) ⊂ X for all nj , j ∈ N.
We continue to use the notation above throughout this section. The following lemma is important

and will be also applied in Section 5.

Lemma 4.6. Let (X,σ) be an irreducible countable sofic shift and F = {log fn}∞n=1 a sequence on
X with tempered variation satisfying (D2) and (D3). Let p be defined as in (D2) and W be defined
as in (D3). Then there exists q ∈ N such that for each k ≥ q there exists an irreducible subshift
(Xlk , σXlk

) on the set Slk of finitely many symbols such that π(X̄Alk
) ⊆ Xlk ⊂ X. Moreover, for

any n,m ∈ N, k ≥ q, u ∈ Bn(Xlk), v ∈ Bm(Xlk), there exists w ∈ W such that uwv is an allowable
word of Xlk and
(4.12)

sup{fn+m+|w||Xlk
(x) : x ∈ [uwv]} ≥ Dn,m

Mn+m+p
sup{fn|Xlk

(x) : x ∈ [u]} sup{fm|Xlk
(x) : x ∈ [v]},

where Mn is defined as in Definition 2.7.

Remark 4.5. If F is a Bowen sequence, (4.12) implies that (C2) holds for F|Xlk
, k ≥ q, replacing

D in (C2) by D/M .

Proof. Since (X,σ) is an irreducible countable sofic shift, there exist an irreducible countable Markov
shift (X̄, σX̄) and a one-block factor map π : X̄ → X such that |π−1(i)| < ∞ for each i ∈ N. Since W
is a finite set, only finitely many symbols appear in W . We first consider the case when W contains
a nonempty allowable word. Call SW the set of symbols that appear in W − {ε}. Let π−1(SW ) be
the set of preimages of the symbols of SW in X̄. Then π−1(SW ) is a finite set because |π−1(i)| < ∞
for each i ∈ N.

Now consider a transition matrix A for X̄ and an increasing sequence {lk}∞k=1 such that the
matrix Alk = A|{1,...,lk}×{1,...,lk} is irreducible for each lk. Then there exists q ∈ N such that
π−1(SW ) ⊂ {1, . . . , lk} for all k ≥ q. Thus, for k ≥ q the subshift (π(X̄Alk

), σπ(X̄Alk
)) is a sofic

shift on the set Slk of finitely many symbols that contains SW . For a fixed k ≥ q, consider the
set π−1(Slk) of the preimages of the set Slk and call it P . Then P contains {1, . . . , lk} and it is a
finite set. Let ȲP ⊂ X be the finite state Markov shift on the symbols of P and define Y = π(ȲP ).
Then Y is a subshift on the set of Slk of finitely many symbols which contains SW . Observe that
π(X̄Alk

) ⊆ Y ⊂ X.
We observe that Y is irreducible. Fix n,m ∈ N. Let u = u1 . . . un ∈ Bn(Y ) and v =

v1 . . . vm ∈ Bm(Y ). Since these are allowable words of X, there exists w = w1 . . . wl ∈ W ,
0 ≤ l ≤ p, such that uwv is allowable in X and (D2) holds. Since uwv is allowable in X,
there exists ū1 . . . ūnw̄1 . . . w̄lv̄1 . . . v̄m ∈ Bn+m+l(X̄) such that π(ū1 . . . ūnw̄1 . . . w̄lv̄1 . . . v̄m) = uwv.
Since all the symbols that appear in the preimages of u, v, w are in the set P , we obtain that
ū1 . . . ūnw̄1 . . . w̄lv̄1 . . . v̄m ∈ Bn+m+l(ȲP ). Therefore, uwv is allowable in Y and Y is irreducible.
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Using the property of tempered variation,

sup{fn+m+|w||Y (y) : y ∈ [uwv]} ≥ 1

Mn+m+p
sup{fn+m+|w|(x) : x ∈ [uwv]}

≥ Dn,m

Mn+m+p
sup{fn(x) : x ∈ [u]} sup{fm(x) : x ∈ [v]}

≥ Dn,m

Mn+m+p
sup{fn|Y (y) : y ∈ [u]} sup{fm|Y (y) : y ∈ [v]}.

For each k ≥ q, we can construct a such Y . Setting Y = Xlk , we obtain the results. If W = {ε}, we
make a similar argument.

!

Under the setting of Lemma 4.6 , we define the topological pressure P (F) as in Definition 2.8.
By Proposition 4.2 we have Z1(F) < ∞ if and only if P (F) < ∞. We note that if Z1(F) = ∞, then
P (F) = ∞ and the proof is given in that of Theorem 4.3.

Theorem 4.3. Let (X,σ) be an irreducible countable sofic shift. If F = {log fn}∞n=1 is a sequence
on X with tempered variation satisfying (C1), (D2) and (D3), then

P (F) = sup
ln

n≥q

{P (F|Xln
)}(4.13)

= sup{P (F|Y ) : Y ⊂ X is an irreducible sofic shift on a finite alphabet},(4.14)

where Xln , q are defined as in Lemma 4.6, and P (F) %= −∞. The variational principle holds. If
P (F) < ∞, then

(4.15) P (F) = sup
µ∈M(X,σ)

{
hµ(σ) + lim

n→∞

1

n

∫
log fndµ : lim

n→∞

1

n

∫
log fndµ > −∞

}
.

If P (F) = ∞, then

(4.16) P (F) = sup
µ∈M(X,σ)

{
hµ(σ) + lim sup

n→∞

1

n

∫
log fndµ : lim sup

n→∞

1

n

∫
log fndµ > −∞

}
.

Remark 4.6. Condition (D3) implies that (X,σ) is a finitely irreducible countable sofic shift. If
sup f1 < ∞, then (4.15) also holds for the case when P (F) = ∞.

Proof. We first consider the case when Z1(F) < ∞. Then P (F) < ∞ by Proposition 4.2. Note that
there exist an irreducible countable Markov shift (X̄, σX̄) and a one-block factor map π : X̄ → X
such that |π−1(i)| < ∞ for each i ∈ N. We show first (4.13) using a modification of the proof of
[MU2, Theorem 1.2]. As in the proof of Proposition 4.1 let f ′(x) = eCfn(x) and F ′ = {log f ′

n}∞n=1.
Then F ′ is sub-additive and P (F) = P (F ′). Let Mn be defined for F as in Definition 2.7.

Let ε > 0. Fix m ∈ N such that (1/m) logMm < ε, (1/(m + p))| log(Dm,m/eC)| < ε and 1− ε <
(m/(m+ p)). Note that Zm(F ′) < ∞.

We apply Lemma 4.6 and consider Xlk where k ≥ q. Then for each n ∈ N, we have

(4.17) Zn(F ′|Xlk
) =

∑

w∈Bn(Xlk
)

sup{f ′
n|Xlk

(x) : x ∈ [w]}.

Since w ∈ Bm(Xlk) implies that w ∈ Bm(X), let Slk(F ′) :=
∑

w∈Bm(Xlk
) sup{f ′

m(x) : x ∈ [w]}.
Noting that for each x1 . . . xm ∈ Bm(X), there exists i ∈ N such that x1 . . . xm ∈ Bm(Xli),

(4.18) Zm(F ′) = lim
i→∞

Sli(F ′),
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where {Sli(F ′)}∞i=1is monotone increasing. Hence, for every ε > 0, there exists k1 > q such that

(4.19)
1

m
logZm(F ′)− 1

m
logSlk1

(F ′) < ε.

Since F has tempered variation, we have that MmZm(F ′|Xlk
) ≥ Slk(F ′). Since F ′ is sub-additive,

we obtain

(4.20)
1

m
logZm(F ′|Xlk1

) ≥ 1

m
logZm(F ′)− ε− logMm

m
≥ P (F ′)− 2ε.

Now, for 0 ≤ i ≤ n, n ∈ N, let ui ∈ Bm(Xlk1
). Since F satisfies (D2) and (D3), letting W be a

finite set from (D3), there exist w1, . . . , wn−1 in W such that u1w1 . . . wn−1un is an allowable word
of length nm+ |w1|+ · · ·+ |wn−1| of X, such that

sup{f ′
nm+|w1|+···+|wn−1|(x) : x ∈ [u1w1 . . . wn−1un]} ≥

(
Dm,m

eC

)n−1 n∏

i=1

sup{f ′
m(x) : x ∈ [ui]}.

(4.21)

By the construction of Xlk , k ≥ q, in the proof of Lemma 4.6, we note that u1w1 . . . wn−1un is an
allowable word of Xlk1

. Therefore,

Mnm+p(n−1) sup{f ′
nm+|w1|+···+|wn−1||Xlk1

(x) : x ∈ [u1w1 . . . wn−1un]}

≥ sup{f ′
nm+|w1|+···+|wn−1|(x) : x ∈ [u1w1 . . . wn−1un]}

≥
(
Dm,m

eC

)n−1 n∏

i=1

sup{f ′
m(x) : x ∈ [ui]} ≥

(
Dm,m

eC

)n−1 n∏

i=1

sup{f ′
m|Xlk1

(x) : x ∈ [ui]}.
(4.22)

Summing over all allowable words ui ∈ Bm(Xlk1
), 0 ≤ i ≤ n, we obtain

∑

0≤t≤p(n−1)

Znm+t(F ′|Xlk1
) ≥

(
Dm,m

eC

)n−1

· 1

Mnm+p(n−1)
(Zm(F ′|Xlk1

))n.

Hence, there exists 0 ≤ in,m ≤ p(n− 1) such that

Znm+in,m(F ′|Xlk1
) ≥

(
Dm,m

eC

)n−1

· 1

Mnm+p(n−1)
· 1

p(n− 1) + 1
·
(
Zm(F ′|Xlk1

)
)n

.

Thus

1

nm+ in,m
log(Znm+in,m(F ′|Xlk1

))

≥ 1

nm+ p(n− 1)
log((

Dm,m

eC
)n−1 · 1

Mnm+p(n−1)
· 1

p(n− 1) + 1
) +

n

nm+ p(n− 1)
logZm(F ′|Xlk1

).

Letting n → ∞ and using (4.20) we have,

lim sup
n→∞

1

nm+ in,m
log(Znm+in,m(F ′|Xlk1

)) ≥ 1

m+ p
log

Dm,m

eC
+

m

m+ p
· 1

m
logZm(F ′|Xlk1

)

≥ −2ε− εP (F ′) + 2ε2 + P (F ′).

(4.23)

Therefore, we obtain (4.13).
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Next assume Z1(F) = ∞. We first show that P (F) = ∞. Given L > 0, there exists Xls , s ≥ q
such that Z1(F|Xls

) > L. Then Z1(F ′|Xls
) > LeC . Let Y := Xls . Then for each n ∈ N there exists

0 ≤ in,1 ≤ p(n− 1) such that

1

n+ in,1
log(Zn+in,1(F ′|Y ))

≥ 1

n+ p(n− 1)
log((

D1,1

eC
)n−1 · 1

Mn+p(n−1)
· 1

p(n− 1) + 1
) +

n

n+ p(n− 1)
logZ1(F ′|Y ).

(4.24)

A similar argument as in the proof of Lemma 4.2 implies P (F) = ∞. The approximation property
(4.13) is obvious from (4.24).

Since Propositions 4.2, 4.3 and Lemma 4.5 hold, the same proof (using the approximation property
(4.13)) as in the proof of Theorem 4.2 yields the variational principle, equations (4.15) and (4.16).
It is easy to see that (4.14) holds by Lemma 4.6 and its proof. !

In the following, we study a condition for which P (F)=PG(F), when G is defined on a countable
sofic shift.

Proposition 4.4. Let (X,σ) be a finitely irreducible countable sofic shift. If G is an almost-additive
sequence on X with tempered variation, then P (G) = PG(G). In particular, if X is a factor of a
finitely primitive countable Markov shift and P (G) < ∞, then lim sup in (2.5) can be replaced by
lim.

Proof. First assume Z1(G) < ∞. Thus P (G) < ∞. Since X is a finitely irreducible countable sofic
shift, let X̄ and π : X̄ → X be as in the proof of Lemma 4.6. Let p ∈ N and a finite set W1 be defined
for X as in Definition 2.3. We consider the case when W1 %= {ε}. Let x1 . . . xn ∈ Bn(X) and a ∈ N be
a symbol in X. Then there exist allowable words w1, w2 in W1 of length 0 ≤ k1, k2 ≤ p respectively
such that aw1x1 . . . xnw2a ∈ Bn+2+k1+k2(X). Therefore, there exist x̄1 . . . x̄n ∈ π−1(x1 . . . xn),
a1, a2 ∈ π−1(a), w̄1 ∈ π−1(w1) and w̄2 ∈ π−1(w2) such that a1w̄1x̄1 . . . x̄nw̄2a2 ∈ Bn+k1+k2+2(X̄)
and π(a1w̄1x̄1 . . . x̄nw̄2a2) = aw1x1 . . . xnw2a. Since |π−1(a)| < ∞, we have π−1(a) = {a1, . . . , at}
for some t ∈ N. For each pair ai, aj , 1 ≤ i, j ≤ t, define ki,j = min{|w| : aiwaj ∈ B2+|w|(X̄), |w| ≥ 1}.
Then for each i, j, there exist a word at which the minimum is attained and we call it w̄i,j ∈ Bki,j (X̄).
Let π(w̄i,j) = wi,j .

Now let x̄ = (a1w̄1x̄1 . . . x̄nw̄2a2w̄2,1)∞ ∈ X̄ and x = π(x̄). Then x has a period (n + 2 + k1 +
k2 + k2,1) in X. We first consider the case when k1, k2 are both nonzero. Since G is almost-additive
and has tempered variation, letting Na = sup{f1(x) : x ∈ [a]}, we obtain

gn+k1+k2+k2,1+2(x)

≥ e−5C

Mn(Mp)2(M1)2Mk
sup{gn(x) : x ∈ [x1 . . . xn]}(Na)

2 sup{gk1(x) : x ∈ [w1]}

· sup{gk2(x) : x ∈ [w2]} sup{gk2,1(x) : x ∈ [w2,1]}.

(4.25)

Since g has tempered variation, for each 1 ≤ i, j ≤ t, there exists constant Cwi,j > 0 such that
sup{gki,j (x) : x ∈ [wi,j ]} > Cwi,j . Since we have finitely many i, j, let B = mini,j Cwi,j . and
K = maxi,j ki,j

Now we consider the case when at least one of k1, k2 is 0. Observe that if k1 is 0, then we replace
sup{gk1(x) : x ∈ [w1]} in (4.25) by 1. This applies also to k2. Clearly there exists D̄ > 0 such that
minw∈W1,|w|≥1 sup{gl(x) : x ∈ [w]} > D̄. LetD̄′ = min{1, D̄}. Then, (4.25) implies that

∑

0≤i≤2p+K

Zn+i+2(G, a) ≥
e−5C

Mn(Mp)2(M1)2MK
Zn(G)(Na)

2BD̄′2.(4.26)
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Thus similar arguments as in the proof of Proposition 2.1 yield

lim sup
n→∞

1

n
logZn(G, a) ≥ lim sup

n→∞

1

n
logZn(G).

Since a is arbitrary, we obtain the result.
Next assume that Z1(G) = ∞. Then P (G) = ∞. Let G′ = C + G. Given L > 0, there exists

Xls , s ≥ q such that Z1(G|Xls
) > L. Let Y := Xls . Then (4.24) holds if we replace F ′ by G′.

Since P (G′|Y ) = PG(G′|Y ), similar arguments as in the proof of Lemma 4.2 imply PG(G) = ∞ To
show the second statement, we use the similar arguments as in the proof of Proposition 2.1. If X̄
is a finitely primitive countable Markov shift, let p be a strong specification number for X̄ and set
k1 = k2 = K = p.

!

Note that Theorem 4.3 generalizes the thermodynamic formalism on non-compact shifts, including
now irreducible countable sofic shifts. Indeed,

Corollary 4.2. Let (X,σ) be a finitely irreducible countable sofic shift. If F is an almost-additive
sequence on X with tempered variation, then Theorem 4.3 holds for F and P (F) = PG(F). In
particular, Theorem 4.3 holds for a continuous function f on X with tempered variation by setting
fn(x) = e(Snf)(x) for all x ∈ X.

Proof. By Lemma 3.1, F satisfies (C1), (D2) and(D3). For the last statement, we also apply Example
3.1. !

Remark 4.7. The variational principle is proved in [MU2, Theorem 1.5] for acceptable func-
tions (uniformly continuous functions with an additional property) on finitely irreducible countable
Markov shifts. Applying [FFY, Proposition 6.2], it is easy to see that acceptable functions belong
to the class of continuous functions with tempered variation. In [FFY, Theorem 2.4], the varia-
tional principle is studied for continuous functions with tempered variation on irreducible countable
Markov shifts, without the finiteness condition on each Mn. We also note that Corollary 4.2 general-
izes the variational principle [IY1, Theorem 3.1] to that for almost-additive sequences with tempered
variation on finitely irreducible countable sofic shifts.

Next we consider examples of Theorem 4.3.

Example 4.3. Let G be defined as in Theorem 6.2. Then G is a Bowen sequence defined on a
finitely irreducible countable sofic shift satisfying (C1), (D2) and (D3). Note that G does not satisfy
(C2). Theorem 4.3 is applied in Theorem 6.2. See Section 6 for more details.

Example 4.4. In Example 3.5, the sequence Ψ = {logψn}∞n=1 defined on an irreducible count-
able sofic shift Y satisfies (C1), (C2) and (C3). Hence Theorem 4.3 holds. Since Z1(Ψ) ≤
C2

∑
i∈N(1/i

2) < ∞ , we obtain P (Ψ) < ∞ and equation (4.15) holds.

Example 4.5. In Example 3.6, define for i ∈ N

Li :=
|π−1(i+ 1)|
|π−1(i)|K .

Choose K > 0 and define a factor map π such that limi→∞ Li exists and L := limi→∞ Li < 1. Then
the sequence Ψ = {logψn}∞n=1 defined on a finitely irreducible countable sofic shift Y satisfies (C1),
(C2) and (C3). Hence Theorem 4.3 holds. Since Z1(Ψ) < ∞ by using the ratio test, we obtain
P (Ψ) < ∞ and equation (4.15) holds. If there exists l ∈ N such that |π−1(i)| ≤ l for all i ∈ N and
K > 1, then the same results hold. If we define a constant K > 0 and a factor map π so that L > 1,
then P (Ψ) = ∞ and equation (4.16) holds.
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5. Invariant Gibbs measures and uniqueness of Gibbs equilibrium measures

The variational principle provides a criteria to choose relevant invariant measures for the (very
large) set M(X,σ) of invariant Borel probability measures. Indeed, measures that maximize the
supremum have interesting ergodic properties. Major difficulties to prove the existence of these
measures are the fact that the space M(X,σ) is not compact (when endowed with the weak* topol-
ogy) and that the entropy map µ .→ hµ(σ) is not necessarily upper-semi continuous. Despite this
we prove that under certain assumptions on the system and the class of sequence of functions such
measures do exist. Moreover, they satisfy the so called Gibbs property which relates the measure of
a cylinder of length n with the function fn. This property turns out to be very useful in a wide range
of applications, for example in dimension theory of dynamical systems. The goal of this section is to
prove under some conditions the existence and uniqueness of ergodic Gibbs measures for the Bowen
sequences on finitely irreducible countable sofic shifts and the uniqueness of equilibrium states. The
results are presented in Section 5.1 and the proofs of some technical lemmas are to be found in
Section 5.2.

5.1. Invariant Gibbs measures and uniqueness of Gibbs equilibrium measures. Through-
out this section, we assume that F = {log fn}∞n=1 is a sequence defined on a finitely irreducible
countable sofic shift (X,σ) satisfying (C1), (C2), (C3) and (C4).

Definition 5.1. Let (X,σ) be a subshift on a countable alphabet and F = {log fn}∞n=1 a sequence
on X satisfying (C1), (C2), (C3) and (C4). A measure µ ∈ M(X,σ) is said to be an equilibrium
measure for F if

P (F) = hµ(σ) + lim
n→∞

1

n

∫
log fn dµ.

Definition 5.2. Let (X,σ) be a subshift on a countable alphabet and F = {log fn}∞n=1 a sequence
on X satisfying (C1), (C2), (C3) and (C4). A measure µ ∈ M(X,σ) is said to be Gibbs for F if
there exist constants C0 > 0 and P ∈ R such that for every n ∈ N and every x ∈ [i1 . . . in] we have

1

C0
≤ µ([i1 . . . in])

exp(−nP )fn(x)
≤ C0.

A Gibbs measure µ for a continuous function φ could satisfy hµ(σ) = ∞ and
∫
φ dµ = −∞.

In such a situation, the measure µ is not an equilibrium measure for φ (see [S3] for comments and
examples).

Existence of Gibbs measure was studied in [IY1, IY2] for an almost-additive sequence on a topo-
logically mixing countable Markov shift with BIP property and in [KR, Theorem 3.7] for a class of
sub-additive Bowen sequences on the full shift on a countable alphabet satisfying (C2), (C3) and
(C4). Here we will generalize these results by considering a finitely irreducible countable sofic shift.
The main result of this section is the following.

Theorem 5.1. Let (X,σ) be a finitely irreducible countable sofic shift. If F = {log fn}∞n=1 is a
Bowen sequence on X satisfying (C1), (C2), (C3) and (C4), then there is a unique invariant ergodic
Gibbs measure µ for F . Moreover, if in addition

∑

i∈N
sup{log f1(x) : x ∈ [i]} sup{f1(x) : x ∈ [i]} > −∞,

then µ is the unique equilibrium measure for F on X.

Remark 5.1. By Proposition 4.4 (C4) is equivalent to P (F) < ∞.
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Corollary 5.1. Let (X,σ) be a finitely irreducible countable Markov shift and G = {log gn}∞n=1 an
almost-additive Bowen sequence on X. If G satisfies (C4), then there is a unique Gibbs measure µ
for G and it is ergodic. Moreover, if in addition

∑

i∈N
sup{log g1(x) : x ∈ [i]} sup{g1(x) : x ∈ [i]} > −∞,

then µ is the unique equilibrium measure for G.

Proof. Lemma 3.1 implies that G satisfies (C2) and (C3). Now apply Theorem 5.1. !

Remark 5.2. Theorem 5.1 generalizes [IY1, Theorem 4.1] in which almost-additive Bowen sequences
on finitely primitive countable Markov shifts are considered. If G = {log gn}∞n=1 is an almost-additive
Bowen sequence, then

∑
i∈N sup{log g1(x) : x ∈ [i]} sup{g1(x) : x ∈ [i]} > −∞ is equivalent to

hµ(σ) < ∞ where µ is the Gibbs measure (see [IY2, Proposition 3.1]).

In Theorem 5.1, we study the case when W %= {ε} (see Remark 2.5). Hence, throughout the rest
of the section, without loss of generality we assume

(A1) F = {log fn}∞n=1 satisfies (C1), (C2) with some p ∈ N and (C3) with a finite setW containing
a nonempty word w∗ of length p,

and

(A2) In Lemma 4.6, for all k ≥ q, w∗ ∈ W appears in (4.12) for a pair of allowable words u, v of
Xlk .

To see (A2), note that since W from (C3) contains w∗ there exist N1, N2 and a pair ū ∈ BN1(X), v̄ ∈
BN2(X) such that ūw∗v̄ is an allowable word of (N1+N2+p) satisfying (C2). In the proof of Lemma
4.6, we take Slk large enough so that it contains all the preimages of symbols that appear in ū and
v̄.

The idea of the proof of Theorem 5.1 is similar to that of [IY1, Theorem 4.1], which in turn
was proved using techniques of [MU2, Lemma 2.8] and [B2, Lemmas 1, 2 and Theorem 5]. The
modification of the proof has to be adapted to the fact that condition (C2) replaces the lower bound
condition (2.2) of an almost-additive sequence. We continue to use the notation from Lemma 4.6.

Theorem 5.2. [Fe4] Let (X,σ) be an irreducible subshift on a finite alphabet. If F = {log fn}∞n=1

is a Bowen sequence on X satisfying (C1) and (C2), then there exists a unique Gibbs measure for
F . Moreover, it is the unique equilibrium measure for F .

Proposition 5.1. For n ≥ q, there is a unique equilibrium measure for F|Xln
and it is Gibbs for

F|Xln
. Moreover, the Gibbs constant C0 (see Definition 5.2) can be chosen independently of Xln .

Proof. The first part of Proposition 5.1 follows from Theorem 5.2. Indeed, note that since F is a
Bowen sequence satisfying (C1), (C2), (C3) and (C4) and Xln contains all allowable words in W for
n ≥ q, we have that F|Xln

is a sequence on (Xln , σXln
) satisfying (4.12) replacing Dn,m/Mn+m+p

by D/M .
In order to prove the second claim in Proposition 5.1 we will modify the proof of [IY1, Claim

4] considering equation (4.12). By the assumptions, any allowable word in W is an allowable word
of Xln for all n ≥ q. Fix Xln , n ≥ q, and call it Z. Define αZ

n =
∑

i1...in∈Bn(Z) sup{fn|Z(z) : z ∈
[i1 . . . in]}. By the sub-additive property of {log eCfn}∞n=1, we have for l, n ∈ N that

(5.1) αZ
n+l ≤ eCαZ

nα
Z
l .

Hence {log(eCαZ
n )}∞n=1 is sub-additive. We claim that for some C1 > 0 the sequence {log(C1αZ

n )}∞n=1

is super-additive. In order to show this, we adapt the arguments of the proof of [IY1, Claim 4] to
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our setting. For l ∈ N, let νl be the Borel probability measure on Z defined by

νl([i . . . il]) =
sup{fl|Z(z) : z ∈ [i1 . . . il]}

αZ
l

.

By Lemma 4.6, for any allowable words u = u1 . . . un and v = v1 . . . vl of Z, n, l ∈ N, there exists
w ∈ B|w|(Z) ∈ W , 0 ≤ |w| ≤ p such that uwv is an allowable word of Z and that

(5.2) sup{fn+|w|+l|Z(z) : z ∈ [uwv]} ≥ D

M
sup{fn|Z(z) : z ∈ [u]} sup{fl|Z(z) : z ∈ [v]}.

For a fixed ū ∈ Bn(Z), considering all possible v ∈ Bl(Z) with w satisfying (5.2) and then
considering all possible ū ∈ Bn(Z), we obtain

p∑

i=0

αZ
n+l+i ≥

D

M
αZ
nα

Z
l .

Let D/M := D1. Then for each n, l ∈ N, there exists 0 ≤ in,l ≤ p such that αZ
n+l+in,l

≥
(D1αZ

nα
Z
l )/(p+ 1). By sub-additivity of {log(eCαZ

n )}∞n=1, we obtain

αZ
n+l+in,l

≤ eCαZ
n+lα

Z
in,l

≤ eCpαZ
n+l(α

Z
1 )

in,l .

Letting K = max0≤i≤p Z(F)i, for any n, l ∈ N we have

(5.3) αZ
n+l ≥ D1α

Z
nα

Z
l /(e

CpK(p+ 1)).

Let C1 = D1/(eCpK(p+ 1)). Since P (F|Z) = limn→∞(1/n)(logαZ
n ), we use the argument in [IY1,

Claim 4.1]. The sub-additivity of {log(eCαZ
n )}∞n=1, the super-additivity of {log(C1αZ

n )}∞n=1 and
Z1(F) < ∞ imply that

(5.4) C1α
Z
n ≤ eP (F|Z)n ≤ eCαZ

n .

We now construct a Gibbs measure using similar arguments as those in the proof of [B2, Theorem
5]. For fixed u ∈ Bn(Z), m ∈ N, we define αZ,u

n+m =
∑

ua1...am∈Bn+m(Z) sup{fn+m|Z(z) : z ∈
[ua1 . . . am]}.

Lemma 5.1. There exists C2 > 0 such that for each fixed u ∈ Bn(Z), for l > n+ 2p, we have

αZ,u
l ≥ C2α

Z
l−n−2p sup{fn|Z(z) : z ∈ [u]}.

Note that C2 is independent of Z.

Proof. For the proof, see Section 5.2. !

By the definition of the measure νl and (C1), for a fixed u = u1 . . . un ∈ Bn(Z), n < l, we have
that,

νl([u]) ≤
eC sup{fn|Z(z) : z ∈ [u]}αZ

l−n

αZ
l

.

Therefore, using (5.4), we obtain that for each z ∈ [u]

νl([u])

e−nP (F|Z)fn|Z(z)
≤ Mνl([u])

e−nP (F|Z) sup{fn|Z(z) : z ∈ [u]}
≤

Me2CαZ
l−nα

Z
n

αZ
l

≤ Me3C

C2
1

.

On the other hand, by Lemma 5.1 and (5.4), for each z ∈ [u], for l > n+ 2p,

νl([u])

e−nP (F|Z)fn|Z(z)
≥

αZ,u
l

αZ
l e

−nP (F|Z) sup{fn|Z(z) : z ∈ [u]}
≥ C1C2e

−2pP (F|Z)−C .
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Noting that e−2pP (F|Z) ≥ e−2pP (F) if P (F) ≥ 0 and e−2pP (F|Z) > 1 if P (F) < 0, there exist
C3 > 0, C4 > 0, both independent of Z, such that for all l > n+ 2p,

(5.5) C3 ≤ νl([u])

e−nP (F|Z)fn|Z(z)
≤ C4 for all z ∈ [u].

Since the set Z is compact, there exists a subsequence {νnk}∞k=1 of {νn}∞n=1 that converges to a
measure ν and for all z ∈ [u]

(5.6) C3 ≤ ν([u])

e−nP (F|Z)fn|Z(z)
≤ C4.

Now let µn = (1/n)
∑n

i=1 σ
i
Zν. We claim that any weak limit point µ of {µn}∞n=1 is a σZ-invariant

Gibbs measure on Z.
For each fixed u ∈ Bn(Z), define αZ

l+n(u) =
∑

a1...alu∈Bl+n(X) sup{fl+n|Z(z) : z ∈ [a1 . . . alu]}.
Then setting l = m+i, form ∈ N, 0 ≤ i ≤ p, we obtain that

∑
0≤i≤p α

Z
n+m+i(u) ≥ D1αZ

m sup{fn|Z(z) :
z ∈ [u]}. Therefore, there exists 0 ≤ in,m,u ≤ p such that

αZ
n+m+in,m,u

(u) ≥ (D1/(p+ 1))αZ
m sup{fn|Z(z) : z ∈ [u]}.

Note that in,m,u depends on n,m and u. In the next lemma, we continue to use the above notation.

Lemma 5.2. There exists C5 > 0 such that for any 0 ≤ i ≤ p, any n,m ∈ N and u ∈ Bn(Z) we
have

αZ
n+m+i(u) ≥ C5α

Z
m sup{fn|Z(z) : z ∈ [u]}.

Note that C5 is independent of Z.

Proof. The proof can be found in Section 5.2 !
Now we apply Lemma 5.2 to show that µ is σZ-invariant. Let u ∈ Bn(Z) be fixed and set

M2 = max{0, P (F)}. Letting l = m+ i for m ∈ N and 0 ≤ i ≤ p,

ν(σ−l
Z [u]) =

∑

v∈Bl(Z),vu∈Bl+n(Z)

ν([vu]) ≥
∑

vu∈Bl+n(Z)

C3

M
e−(l+n)P (F|Z) sup{fn+l|Z(z) : z ∈ [vu]}

≥ C3C5

M
e−(m+i+n)P (F|Z)αZ

m sup{fn|Z(z) : z ∈ [u]} ≥ C3C5

MC4eC
e−pM2ν([u]),

where in the last inequality we use (5.4). Using (C1), similarly, we obtain

ν(σ−l
Z [u]) ≤ C4eCM

C1C3
ν([u]).

Therefore, using the similar arguments as in the proof of [B2, Theorem 5], there exist C̄3, C̄4 > 0
such that for u ∈ Bn(Z) and x ∈ [u] we have

(5.7) C̄3 ≤ µ([u])

e−nP (F|Z)fn|Z(x)
≤ C̄4.

Thus µ is a Gibbs measure on Z. It is σZ- invariant because it is a weak limit of invariant measures.
By Theorem 5.2, µ is the unique invariant ergodic Gibbs measure and the unique equilibrium measure
for F|Z . Hence, for n ≥ q, if we let µln be the σ|Zln

- invariant Gibbs measure on Zln , then it satisfies
for each k ∈ N, u ∈ Bk(Zln) and every z ∈ [u],

(5.8) C̄3 ≤ µln([u])

e−kP (F|Zln
)fk|Zln

(z)
≤ C̄4.

Clearly C̄3 and C̄4 are independent of Zln . !
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In the following proof, we continue to use the notation of the σ|Zln
-invariant Gibbs measure µln

on Zln satisfying (5.8). The idea in the rest of the proof is basically the same as in [IY1, Theorem
4.1]. However, techniques used here are slightly different, taking into account of (C2). We include
some details for completeness.

Proof of Theorem 5.1. We show that the sequence {µln}∞n=q of σ-invariant Borel probability mea-
sures on X is tight. For this purpose, we apply Prohorov’s theorem to the sequence {µln}∞n=q. We
note that the same proof of [IY1, Theorem 4.1] holds (see also the proof of [MU2, Lemma 2.7]).
Here we only state how we modify using the notation of [IY1, Theorem 4.1].

We first note that in the proof the Gibbs property of µln and the property (C1) of F|Zln
are

applied. Secondly the fact that, for an irreducible Markov shift X, X ∩
∏

k≥1[1, nk] is a compact
subset of X is used (see proof of [IY1, Theorem 4.1] for details). Since we consider a finitely
irreducible countable sofic shift X, there exist an irreducible countable Markov shift X̄ and one-
block factor map π : X̄ → X such that |π−1(i)| < ∞ for each i ∈ N. For a fixed k, we first consider
preimages of [1, nk] and call it Pnk . Note that Pnk is a finite set. Then X̄ ∩

∏
k≥1 Pnk is a compact

subset of X̄. Thus X ∩
∏

k≥1[1, nk] is a compact subset of X.
Therefore, we conclude that there exists a convergent subsequence {µlnk

}∞k=1 of {µln}∞n=q. We
denote by µ a limit point of this subsequence. Then µ is σ-invariant onX. By (5.8), letting lnk → ∞,
we obtain for n ∈ N , u ∈ Bn(X) and each x ∈ [u] that,

(5.9) C̄3 ≤ µ ([u])

e−nP (F)fn(x)
≤ C̄4.

Therefore, µ is a Gibbs measure for F on X. Next we show that µ is ergodic. In oder to show this
we apply the following lemma.

Lemma 5.3. For fixed allowable words u ∈ Bn(X), v ∈ Bl(X) and t ∈ N,
∑

ua1...ai+tv∈Bn+l+t+i(X),0≤i≤2p

sup{fn+l+t+i(x) : x ∈ [ua1 . . . at+iv]}

≥ D2 sup{fn(x) : x ∈ [u]} sup{fl(x) : x ∈ [v]}Zt(F).

Proof. The proof can be found in Section 5.2. !

Now we show that any invariant Gibbs measure for F is ergodic. In particular, in the following, we
show that µ is ergodic by proving that there exists C6 > 0 such that given u ∈ Bn(X), v ∈ Bl(X) and
t ∈ N, there exists 0 ≤ iu,v,t ≤ 2p such that µ([u] ∩ σ−(n+t+iu,v,t)([v])) ≥ (C6/(2p+ 1))µ([u])µ([v]).
Note that the same proof holds for any invariant Gibbs measure for F .

Define αn =
∑

i1...in∈Bn(X) sup{fn(x) : x ∈ [i1 . . . in]}. Let M2 = max{0, P (F)}. By applying
Lemma 5.3,

2p∑

i=0

µ([u] ∩ σ−(n+t+i)([v])) =
2p∑

i=0

∑

ua1...at+iv∈Bn+l+t+i(X)

µ([ua1 . . . at+iv])

≥ C̄3e−(n+l+t)P (F)−2pM2

M

2p∑

i=0

∑

ua1...at+iv∈Bn+l+t+i(X)

sup{fn+l+t+i(x) : x ∈ [ua1 . . . at+iv]}

≥ C̄3D2e−(n+l+t)P (F)−2pM2

M
αt sup{fn(x) : x ∈ [u]} sup{fl(x) : x ∈ [v]}

≥ C̄3D2e−2pM2

MC̄4
2
eC

µ([u])µ([v]),
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where in the third inequality we use Lemma 5.3 and in the last inequality we use (5.9). Now letting

C6 = (C̄3e−2pM2D2)/(MC̄4
2
eC), there exists 0 ≤ iu,v,t ≤ 2p such that

µ([u] ∩ σ−(n+t+iu,v,t)([v])) ≥ (C6/(2p+ 1))µ([u])µ([v]).

The Gibbs property with ergodicity implies that µ is the unique invariant ergodic measure on X
that satisfies the Gibbs property for F . Finally we show that, if in addition,

∑

i∈N
sup{log f1(x) : x ∈ [i]} sup{f1(x) : x ∈ [i]} > −∞,

then the unique invariant ergodic Gibbs measure µ for F is the unique equilibrium measure for F .
We claim that

∑

i∈N
sup{log f1(x) : x ∈ [i]} sup{f1(x) : x ∈ [i]} > −∞ if and only if −

∑

i∈N
µ([i]) logµ([i]) < ∞.

To see this, by (5.9),
∑

i∈N
µ([i]) logµ([i]) ≤

∑

i∈N
C̄4e

−P (F) sup{f1(x) : x ∈ [i]} log(C̄4e
−P (F) sup{f1(x) : x ∈ [i]})

≤ C̄4e
−P (F)(−P (F) + log C̄4)Z1(F) + C̄4e

−P (F)
∑

i∈N
sup{f1(x) : x ∈ [i]} log(sup{f1(x) : x ∈ [i]}).

Similarly, we can prove the other direction. Since for all n ∈ N

hµ(σ) = − lim
n→∞

1

n

∑

un∈Bn(X)

µ([un]) logµ([un]) ≤ − 1

n

∑

un∈Bn(X)

µ([un]) logµ([un]),

we obtain that hµ(σ) < ∞. We note that for n ∈ N,

1

n

∫
log fndµ ≤ 1

n

∑

un∈Bn(X)

sup{log fn(x) : x ∈ [un]}µ([un]) ≤
M

n

∫
log fndµ.

Using (5.9), a simple calculation shows that

hµ(σ) + lim
n→∞

1

n

∫
log fndµ = P (F).

Thus limn→∞(1/n)
∫
log fndµ > −∞. Hence µ is an equilibrium measure.

To show that µ is the unique equilibrium measure, we use the same arguments as in [KR] and
only mention modified parts for our setting. As in [KR, Lemma 3.9], we first claim that if ν %= µ is
an equilibrium measure for F then ν is absolutely continuous with respect µ. Observe that given a
sequence {Cn}∞n=1, where each Cn is a union of cylinder sets of length n of X, by using the concavity
of h(x) = −x log x and the Gibbs property of µ, we obtain

0 =n(hν(σ) + lim
n→∞

1

n

∫
log fndν − P (F)) ≤

∫
log(fne

C)dν − nP (F)−
∑

w∈Bn(X)

ν([w]) log ν([w])

≤ log 2 + ν([Cn]) log(
µ([Cn]

eCC̄3
) + ν([X \ Cn]) log(

µ([X \ Cn])

eCC̄3
).

Applying the proof of [KR, Lemma 3.9] by using the above inequalities, we obtain the claim. Then
we follow the same proof found in [KR] to show the uniqueness.

!
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5.2. Proofs of Lemmas 5.1, 5.2, and 5.3.

Proof of Lemma 5.1. Fix n ∈ N. It is direct from (5.2) that for any m ∈ N, u ∈ Bn(Z),
∑

0≤i≤p

αZ,u
n+m+i ≥ D1α

Z
m sup{fn|Z(z) : z ∈ [u]},

where D1 := D/M . Thus, there exists 0 ≤ in,m,u ≤ p such that

αZ,u
n+m+in,m,u

≥ D1

p+ 1
αZ
m sup{fn|Z(z) : z ∈ [u]}.

Fix l > n+ 2p and set m = l − n− 2p. Then there exists in,m,u such that

(5.10) αZ,u
l−2p+in,m,u

≥ D1

p+ 1
αZ
l−2p−n sup{fn|Z(z) : z ∈ [u]}.

Now take w∗ ∈ W such that |w∗| = p. Take ua1 . . . al−n−2p+in,m,u ∈ Bl−2p+in,m,u(Z) and call it v.
Then by Lemma 4.6 there exists w ∈ W such that vww∗ is an allowable word of Z and

sup{fl−2p+in,m,u+|w|+p|Z(z) : z ∈ [vww∗]} ≥ D1 sup{fl−2p+in,m,u |Z(z) : z ∈ [v]} sup{fp|Z(z) : z ∈ [w∗]}.
In the similar manner, we can take w̄ ∈ W such that

sup{fl+in,m,u+|w|+|w̄||Z(z) : z ∈ [vww∗w̄w∗]}
≥ D1

2 sup{fl−2p+in,m,u |Z(z) : z ∈ [v]}(sup{fp|Z(x) : x ∈ [w∗]})2.
Let |w| = q1, |w̄| = q2 and write ww∗w̄w∗ = w1 . . . w2p+q1+q2 . Then using (C1),

sup{fl+in,m,u+q1+q2 |Z(z) : z ∈ [vww∗w̄w∗]}
≤ eC sup{fl|Z(z) : z ∈ [vw1 . . . w2p−in,m,u ]} sup{fin,m,u+q1+q2 |Z(z) : z ∈ [w2p−in,m,u+1 . . . w2p+q1+q2 ]}
≤ e3pC sup{fl|Z(z) : z ∈ [vw1 . . . w2p−in,m,u ]} max

0≤i≤3p
Z1(F)i,

if in,m,u + q1 + q2 ≥ 1. If in,m,u = q1 = q2 = 0, then the second line in the above inequalities is
simplified. If we let M ′ = max0≤i≤3p Z1(F)i, then

sup{fl|Z(z) : z ∈ [vw1 . . . w2p−in,m,u ]} ≥ D1
2

e3pCM ′ sup{fl−2p+in,m,u |Z(z) : z ∈ [v]}(sup{fp|Z(z) : z ∈ [w∗]})2

≥ D1
2

e3pCM ′M2
sup{fl−2p+in,m,u |Z(z) : z ∈ [v]}(sup{fp(y) : y ∈ [w∗]})2,

where in the last inequality we use the fact that F is a Bowen sequence. Let m̄ = minw∈W (sup{fp(y) :
y ∈ [w]})2. Then summing over all allowable words a1 . . . al−n−2p+in,m,u such that ua1 . . . al−n−2p+in,m,u ∈
Bl−2p+in,m,u(Z), we obtain that

αZ,u
l ≥ (sup{fp(y) : y ∈ [w∗]})2D1

2

e3pCM ′M2(p+ 1)
αZ,u
l−2p+in,m,u

≥ m̄D1
2

e3pCM ′M2(p+ 1)
αZ,u
l−2p+in,m,u

,

and combining with (5.10) the result follows. !

Proof of Lemma 5.2. Fix n,m ∈ N and u ∈ Bn(Z). There exists 0 ≤ in,m,u ≤ p such that
αZ
n+m+in,m,u

(u) ≥ (D1/(p+1))αZ
m sup{fn|Z(z) : z ∈ [u]}. We first consider the case when p ≥ 2. Let

in,m,u = i0 and assume i0 ≥ 1. Let a1 . . . am+i0u ∈ Bn+m+i0(Z) and call it v. Let w∗ = w∗
1 . . . w

∗
p ∈

W such that |w∗| = p. Take C̄ = max0≤i≤2p Z1(F)i Also, take DW = (1/M)minw∈W sup{f|w|(x) :
x ∈ [w]}. Then by Lemma 4.6 there exists w ∈ W such that
(5.11)

sup{fn+m+i0+p+|w||Z(z) : z ∈ [w∗wv]} ≥ D

M
sup{fp|Z(z) : z ∈ [w∗]} sup{fn+m+i0 |Z(z) : z ∈ [v]}.
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First we show that there exists C1 > 0 such that for any j ∈ N such that i0 + j ≤ p,

(5.12) αZ
n+m+i0+j(u) ≥ C1α

Z
n+m+i0(u).

Fix j and we consider two cases depending on |w|, |w| > j and |w| ≤ j. Let w = w1 . . . wk and
suppose k > j. Since

sup{fn+m+i0+p+k|Z(z) : z ∈ [w∗wv]}
≤ eC sup{fp+k−j |Z(z) : z ∈ [w∗w1 . . . wk−j ]} sup{fn+m+i0+j |Z(z) : z ∈ [wk−j+1 . . . wkv]}
≤ e2pCC̄ sup{fn+m+i0+j |Z(z) : z ∈ [wk−j+1 . . . wkv]},

applying (5.11), we obtain

sup{fn+m+i0+j |Z(z) : z ∈ [wk−j+1 . . . wkv]}(5.13)

≥ D

e2pCC̄M
sup{fp|Z(z) : x ∈ [w∗]} sup{fn+m+i0 |Z(z) : z ∈ [v]}.(5.14)

Next suppose k ≤ j ≤ p− i0. Then

sup{fn+m+i0+p+k|Z(z) : z ∈ [w∗wv]}
(5.15)

≤ eC sup{fp−(j−k)|Z(z) : z ∈ [w∗
1 . . . w

∗
p−(j−k)]} sup{fn+m+i0+j |Z(z) : z ∈ [w∗

p−(j−k)+1 . . . w
∗
pwv]}.

(5.16)

Hence

sup{fn+m+i0+j |Z(z) : z ∈ [w∗
p−(j−k)+1 . . . w

∗
pwv]}(5.17)

≥ D

epCC̄M
sup{fp|Z(z) : x ∈ [w∗]} sup{fn+m+i0 |Z(z) : z ∈ [v]}.(5.18)

For each a1 . . . am+i0u ∈ Bn+m+i0(Z), finding w satisfying (5.11) and applying (5.14) or (5.18),
we obtain

(5.19) αZ
n+m+i0+j(u) ≥

DDW

e2pCC̄
αZ
n+m+i0(u).

Next we show that there exists C ′
1 > 0 such that for each j ∈ N, 0 ≤ j ≤ i0 ≤ p, we have

αZ
n+m+i0−j(u) ≥ C ′

1α
Z
n+m+i0(u). Fix j. For each v = a1 . . . am+i0u ∈ Bn+m+i0(Z),

sup{fj |Z(z) : z ∈ [a1 . . . aj ]} sup{fn+m+i0−j |Z(z) : z ∈ [aj+1 . . . am+i0u]}
≥ e−C sup{fn+m+i0 |Z(z)z ∈ [v]}.

Noting that sup{fj |Z(z) : z ∈ [a1 . . . aj ]} ≤ e(p−1)CC̄, we obtain

(5.20) αZ
n+m+i0−j(u) ≥

1

C̄epC
αZ
n+m+i0(u).

For the case when i0 = 0, we make similar arguments. We note that (5.16) is not used (calculation
is simplified) when i0 = 0, j = p and k = 0. For the case when p = 1, we consider the case when
i0 = 0, 1 in a similar manner. Hence we obtain the results. !

Proof of Lemma 5.3. For a fixed t ∈ N, fix c ∈ Bt(X). Then given v and c, there exists w1 ∈
B|w1|(X), 0 ≤ |w1| ≤ p such that

(5.21) sup{ft+|w1|+l(x) : x ∈ [cw1v]} ≥ D sup{ft(x) : x ∈ [c]} sup{fl(x) : x ∈ [v]}.
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Therefore, for fixed u and cw1v above, there exists w2 ∈ B|w2|(X), 0 ≤ |w2| ≤ p such that

sup{fn+|w2|+t+|w1|+l(y) : y ∈ [uw2cw1v]}(5.22)

≥ D sup{fn(x) : x ∈ [u]} sup{ft+|w1|+l(x) : x ∈ [cw1v]}(5.23)

≥ D2 sup{fn(x) : x ∈ [u]} sup{ft(y) : x ∈ [c]} sup{fl(x) : x ∈ [v]}.(5.24)

Summing over all allowable words c ∈ Bt(X), each of which satisfies (5.21) and (5.22)-(5.24) with
some w1, w2, we obtain the result. !

6. Application to Hidden Gibbs measures on shift spaces over countable alphabets

In this section, we apply the results in the previous sections to problems on factors of invariant
Gibbs measures. Let π : X → Y be a one-block factor map between countable sofic shifts such
that |π−1(i)| < ∞ for each i ∈ N. For every measure µ ∈ M(X,σ) the map π induces a measure
ν ∈ M(Y, σ) defined by

ν(B) = πµ(B) := µ(π−1B),

where B ⊂ Y is any Borel set. If the original measure µ is a Gibbs measure then the measure ν, which
is a factor of a Gibbs measure, is sometimes called hidden Gibbs measure. Determining the properties
of πµ is a problem that has been addressed in different settings. In statistical mechanics, it has been
found that non-Gibbs measures can occur as images of Gibbs measures under Renormalization Group
transformations and generalizations of Gibbs measures have been studied (see for example [E, EFS]).

The study of this type of measure also has attracted a great deal of attention in dynamical
systems. For an overview of the subject, see the survey article by Boyle and Petersen [BP]. The
factor of the Gibbs measure for a continuous function need not be Gibbs for a continuous function
but may be for a sequence of continuous functions.

The main goal of this section is to study factors of Gibbs measures on finitely irreducible countable
sofic shifts. Technically, we make use of the thermodynamic formalism developed in the article,
in particular the results in Section 5 and apply a similar approach as in [Y2]. Let (X,σX) and
(Y, σY ) be finitely irreducible countable sofic shifts. For a one-block factor map π : X → Y ,
n ∈ N, y = (y1, . . . yn, . . . ) ∈ Y , let En(y) be a set consisting of exactly one point from each cylinder
[x1 . . . xn] such that π(x1 . . . xn) = y1 . . . yn. Given a sequence F = {log fn}∞n=1 on X, define

gn(y) = sup
En(y)





∑

x∈En(y)

fn(x)




 .

We continue to use the notation in this section. Recall that we identify the set of a countable
alphabet with N.

Theorem 6.1. Let (X,σX) be a finitely irreducible countable sofic shifts, (Y, σY ) a subshift on a
countable alphabet and π : X → Y a one-block factor map such that for each i ∈ N, |π−1(i)| < ∞.
Let F = {log fn}∞n=1 be an almost-additive Bowen sequence on X. If Z1(F) < ∞, then there exists
a unique invariant ergodic Gibbs measure µ for F and the projection πµ of the measure µ is the
unique invariant ergodic Gibbs measure for G = {log gn}∞n=1. Moreover,

PG(F) = P (F) = sup
µ∈M(X,σX)

{
hµ(σX) + lim

n→∞

1

n

∫
log fndµ : lim

n→∞

1

n

∫
log fndµ > −∞

}
(6.1)

= sup
ν∈M(Y,σY )

{
hν(σY ) + lim

n→∞

1

n

∫
log gndν : lim

n→∞

1

n

∫
log gndν > −∞

}
(6.2)

= P (G) < ∞.(6.3)
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In addition, if
∑

i∈N sup{log f1(x) : x ∈ [i]} sup{f1(x) : x ∈ [i]} > −∞, then µ is the unique
equilibrium measure for F and πµ is the unique equilibrium measure for G. In particular, if (X,σX)
is a factor of a finitely primitive countable Markov shift, then lim sup in the definition (2.5) of PG(F)
can be replaced by lim.

Remark 6.1. In [Y2, Theorem 3.1], almost-additive Bowen sequences on finitely primitive subshifts
are considered and the proof of Theorem 6.1 generalizes it for those on finitely irreducible subshifts.

Remark 6.2. Another approach to show [Y2, Theorem 3.1] is to apply [Fe4, Proposition 3.7]
concerning relative variational principle. However, in [Fe4, Proposition 3.7], shift spaces are assumed
to be compact (subshifts on finite alphabets) and so we cannot apply the proposition directly to
show Theorem 6.1.

Proof of Theorem 6.1. We first note that Y is an irreducible countable sofic shift because X is an
irreducible countable sofic shift. Since X is finitely irreducible, there exist p ∈ N and a finite set W1

defined in Definition 2.3.
By Lemma 3.1 the sequence F = {log fn}∞n=1 satisfies (C1), (C2) with p, (C3) with W1 and (C4).

Hence, by Theorem 5.1, there exists a unique invariant ergodic Gibbs measure µ for F = {log fn}∞n=1.
Clearly G = {log gn}∞n=1 is a Bowen sequence. We show that G satisfies (C1), (C2), (C3) and (C4).
By [Y2, Lemma 3.4], the sequence G satisfies (C1). To verify that condition (C4) is fulfilled, note
that for each symbol i ∈ N in Y we have that

sup{g1(y) : y ∈ [i]} ≤
∑

j∈N,π(j)=i

sup{f1(x) : x ∈ [j]}.

Then Z1(G) ≤
∑

i∈N
∑

j∈N,π(j)=i sup{f1(x) : x ∈ [j]} = Z1(F) < ∞. Next we show that G satisfies
(C2). For y = (y1, . . . , yn, . . . ) ∈ Y , by the Bowen property,

1

M

∑

x1...xn∈Bn(X),π(x1...xn)=y1...yn

sup{fn(x) : x ∈ [x1 . . . xn]} ≤ gn(y)(6.4)

≤
∑

x1...xn∈Bn(X),π(x1...xn)=y1...yn

sup{fn(x) : x ∈ [x1 . . . xn]}.(6.5)

We note that if X is an irreducible subshift on a finite alphabet (compact case), then [Fe4, Lemma
5.7] and (6.5) imply that G satisfies (C1) and (C2). For completeness, we present a proof in this non-
compact setting. Since p is a weak specification number of X, Y also satisfies the weak specification
property with the specification number p. In particular, for given u ∈ Bn(Y ) and v ∈ Bm(Y ),
n,m ∈ N, there exists w1 ∈ π(W1) (see Example 3.3 for the notation), 0 ≤ |w1| ≤ p such that uw1v
is an allowable word of Y . For w ∈ π(W1) such that uwv is allowable in Y , pick a yw ∈ [uwv].
Note that given any x1 . . . xn ∈ π−1(u) and x′

1 . . . x
′
m ∈ π−1(v), there exists w0 ∈ W1 such that

x1 . . . xnw0x′
1 . . . x

′
m is allowable with the property (C2) and π(x1 . . . xnw0x′

1 . . . x
′
m) = uπ(w0)v.
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Then
∑

w∈π(W1)

sup{gn+m+|w|(y) : y ∈ [uwv]} ≥
∑

w∈π(W1)

gn+m+|w|(yw)

≥
∑

w∈π(W1)

1

M

∑

x1...xnw̄x′
1...x

′
m∈Bn+m+|w̄|(X)

π(x1...xnw̄x′
1...x

′
m)=uwv

sup{fn+|w|+m(x) : x ∈ [x1 . . . xnw̄x
′
1 . . . x

′
m]}

≥ 1

M

∑

x1...xnw̄x′
1...x

′
m∈Bn+m+|w̄|(X)

π(x1...xnw̄x′
1...x

′
m)=uwv

D sup{fn(x) : x ∈ [x1 . . . xn]} sup{fm(x) : x ∈ [x′
1 . . . x

′
m]}

≥ D

M




∑

x1...xn∈Bn(X)
π(x1...xn)=u

sup{fn(x) : x ∈ [x1 . . . xn]}








∑

x′
1...x

′
m∈Bm(X)

π(x′
1...x

′
m)=v

sup{fm(x) : x ∈ [x′
1 . . . x

′
m]}





≥ D

M
sup{gn(y) : y ∈ [u]} sup{gm(y) : y ∈ [v]},

where in the third inequality we take w̄ ∈ W1 such that (C2) holds with x1 . . . xnw̄x′
1 . . . x

′
m. There-

fore, there exists w1 ∈ π(W1) such that uw1v is allowable in Y and

(6.6) sup{gn+|w1|+m(y) : y ∈ [uw1v]} ≥ D

M |π(W1)|
sup{gn(y) : y ∈ [u]} sup{gm(y) : y ∈ [v]}.

Hence G satisfies (C2) with the same value of p that appears in the weak specification and (C3) with
W = π(W1). By Theorem 5.1 the sequence G has a unique invariant Gibbs measure ν. The second
and fourth equalities in Theorem 6.1 hold because of the variational principle.

To complete the proof of the theorem, we apply ideas found in the proof of [Y2, Theorem 3.1].
Let µ be the equilibrium measure for F . To show that that πµ = ν, observe that the proof of
[Y2, Theorem 3.7] holds in our setting because of the definition of the Gibbs measure. Hence, if we
define g̃n(y) = gn(y)e−nP (F) and G̃ = {log g̃n}∞n=1, then there is a unique invariant Gibbs measure
ν̃ for G̃ such that πµ = ν̃. Hence πµ = ν and it is the unique Gibbs measure for G. By the
definition of topological pressure, it is easy to see that Zn(G) ≤ Zn(F) and Zn(F) ≤ MZn(G).
Thus P (F) = P (G). Finally, we show that ν is a unique equilibrium measure by showing that∑

i∈N sup{log g1(y) : y ∈ [i]} sup{g1(y) : y ∈ [i]} > −∞. Assume that
∑

x1∈N sup{f1(x) : x ∈
[x1]} sup{log f1(x) : x ∈ [x1]} > −∞.

Using the definition of g1 and the fact that F is a Bowen sequence we obtain that

sup{g1(y) : y ∈ [y1]} sup{log g1(y) : y ∈ [y1]}

≥ 1

M




∑

x1∈N
π(x1)=y1

sup{f1(x) : x ∈ [x1]}



 log




1

M

∑

x1∈N
π(x1)=y1

sup{f1(x) : x ∈ [x1]}





≥ 1

M
·
(
log

1

M

)∑̇
x1∈N

π(x1)=y1

sup{f1(x) : x ∈ [x1]}

+
1

M

∑

x1∈N
π(x1)=y1

sup{f1(x) : x ∈ [x1]} sup{log f1(x) : x ∈ [x1]}.
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Therefore, summing over all allowable y1 ∈ N, we obtain the result. Applying Theorem 5.1 we
have that ν is the unique equilibrium measure for G. For the last statement, we apply Proposition
4.4. !

Theorem 6.2. Let (X,σX) be a finitely irreducible countable sofic shift, (Y, σY ) a subshift on a
countable alphabet and π : X → Y a one-block factor map such that for each i ∈ N, |π−1(i)| < ∞.
Let F = {log fn}∞n=1 be an almost-additive sequence on X with tempered variation. Then

PG(F) = P (F) = sup
µ∈M(X,σX)

{
hµ(σX) + lim sup

n→∞

1

n

∫
log fndµ : lim sup

n→∞

1

n

∫
log fndµ > −∞

}(6.7)

= sup
ν∈M(Y,σY )

{
hν(σY ) + lim sup

n→∞

1

n

∫
log gndν : lim sup

n→∞

1

n

∫
log gndν > −∞

}
(6.8)

= P (G).(6.9)

If sup f1 < ∞, then lim sup in the above equations can be replaced by lim.

Proof. If F has tempered variation, (6.6) is replaced by

sup{gn+|w1|+m(y) : y ∈ [uwv]}

≥ e−CQ

Mn+m+pMnMmMp|π(W1)|
sup{gn(y) : y ∈ [u]} sup{gm(y) : y ∈ [v]},

where Q is defined for F as in Lemma 3.1. Applying Corollary 4.2 and Theorem 4.3, we obtain (6.7)
and (6.9). To show P (F) = P (G), we make similar arguments as in the proof of Theorem 6.1 . !

Remark 6.3. We do not know the existence of equilibrium measures for F and G in Theorem 6.2.

Next we consider the images of factors of Gibbs measures for single functions. Recall the definition
of functions in the Bowen class from Section 2.

Corollary 6.1. Let (X,σX) be a finitely irreducible countable sofic shift, (Y, σY ) a subshift on a
countable alphabet and π : X → Y a one-block factor map such that for each i ∈ N, |π−1(i)| < ∞.
Let f ∈ C(X) be in the Bowen class and suppose Z1(f) < ∞. Then there exists a unique invariant
ergodic Gibbs measure µ for f . Setting fn = eSn(f) in G, the projection πµ of the measure µ is the
unique invariant ergodic Gibbs measure for G = {log gn}∞n=1. Then

PG(f) = P (f) = sup
µ∈M(X,σX)

{
hµ(σX) +

∫
fdµ :

∫
fdµ > −∞

}
(6.10)

= sup
ν∈M(Y,σY )

{
hν(σY ) + lim

n→∞

1

n

∫
log gndν : lim

n→∞

1

n

∫
log gndν > −∞

}
(6.11)

= P (G) < ∞.(6.12)

In addition, if
∑

i∈N sup{log f(x) : x ∈ [i]} sup{f(x) : x ∈ [i]} > −∞, then µ is the unique equilib-
rium measure for f and πµ is the unique equilibrium measure for G.

Proof. The result is clear by applying Theorem 6.1. !

Remark 6.4. This is a generalization of [Y2, Corollary 3.2].
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7. Other applications

7.1. Product of matrices and maximal Lyapunov exponents. A natural and interesting appli-
cation of the non-additive version of thermodynamic formalism is the study of the norm of products
of matrices. Indeed, let Md(R) be the set of real valued d×d matrices and ‖·‖ be a sub-multiplicative
norm. Let {A1, A2, . . . } be a countable set in Md(R). Let (X,σ) be a finitely irreducible countable
sofic shift. If w = (i1, i2, . . . ) ∈ X, define the sequence of functions Φ = {log φn}∞n=1 by

φn(w) = ‖Ain · · ·Ai2Ai1‖.
Since

‖AB‖ ≤ ‖A‖‖B‖,
the sequence Φ is sub-additive. It is a direct consequence of the sub-additive ergodic theorem [Ki]
that if µ ∈ M(X,σ) is an ergodic measure, then for µ-almost every w ∈ X

lim
n→∞

1

n

∫
log φn dµ = lim

n→∞

1

n
log φn(w).

The number

λ(w) := lim
n→∞

1

n
log φn(w),

is called Maximal Lyapunov exponent of w, whenever the limit exists. This number was originally
studied in the context in which X is the full shift on a finite alphabet with a finite collection
matrices with strictly positive entries (see the work by Furstenberg and Kesten from 1960 [FK]).
Ever since, the assumptions on the space and on the matrices has been generalized in wide ranges.
The techniques developed in this article allow for another generalization that can be thought of as
a non-compact version of the results obtained by Feng in [Fe3].

Proposition 7.1. Let (X,σ) be a finitely irreducible countable sofic shift. Let {A1, A2, . . . } be
a countable set of matrices in Md(R) having non-negative entries. Let Φ = {log φn}∞n=1 be a the
sequence of functions such that φn : X → R is defined by φn(w) = ‖Ain · · ·Ai2Ai1‖. If Φ satisfies
(C2), (C3) and (C4), then there exists a unique invariant ergodic Gibbs measure µ for Φ. Moreover,
if in addition

∞∑

i=1

‖Ai‖ log ‖Ai‖ > −∞

then µ is the unique equilibrium measure for Φ on X, that is

P (Φ) = hµ(σ) + lim
n→∞

1

n

∫
log φndµ.

Note that φn is constant in cylinders of length n, therefore the Bowen condition is satisfied.
Proposition 7.1 is an extension of [IY1, Proposition 7.1] in which the same conclusion was obtained
under the assumption that X is a countable Markov shift satisfying the BIP condition and Φ is
almost-additive.

7.2. The singular value function. Thermodynamic formalism has been used, at least since the
mid 1970s, to study the (Hausdorff) dimension of certain dynamically defined sets. This approach
has been rather successful when the dynamical system is conformal. However, in dimension two (or
higher) where a typical dynamical system is non-conformal the results obtained are fairly weak. With
the purpose of obtaining better estimates on the dimension of non-conformal repellers, Falconer [F1]
introduced the singular value function. The singular values s1(A), s2(A) of a 2× 2 matrix A are the
eigenvalues, counted with multiplicities, of the matrix (A∗A)1/2, where A∗ denotes the transpose of
A. The singular values can be interpreted as the length of the semi-axes of the ellipse which is the
image of the unit ball under A.
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Let f : R2 .→ R2 be a C1 map and let Λ ⊂ R2 be a repeller of f . That is, the set Λ is a (not
necessarily compact), f -invariant, and the map f is expanding on Λ, i.e., there exist c > 0 and β > 1
such that

‖dxfn(v)‖ ≥ cβn‖v‖,
for every x ∈ Λ, n ∈ N and v ∈ TxR2. We will also assume that there exists an open set U ⊂ R2

such that Λ ⊂ U and Λ = ∩n∈Nfn(U) and that f restricted to Λ can be coded by an irreducible
countable sofic shift. For each x ∈ R2 and v ∈ TxR2, we define the Lyapunov exponent of (x, v) by

λ(x, v) := lim sup
n→∞

1

n
log ‖dxfnv‖.

For each x ∈ R2, there exists a positive integer s(x) ≤ 2, numbers λ1(x) ≥ λ2(x), and linear
subspaces

{0} = Es(x)+1(x) ⊂ Es(x)(x) ⊂ E1(x) = TxR
2,

such that
Ei(x) =

{
v ∈ TxR2 : λ(x, v) = λi(x)

}

and λ(x, v) = λi(x) if v ∈ Ei(x) \ Ei+1(x). The functions, φi,n : Λ → R are defined by

φi,n(x) = log si(dxf
n)

and called singular value functions. It follows from Oseledets’ multiplicative ergodic theorem that
for each finite f−invariant measure µ there exists a set X ⊂ R2 of full µ measure such that

(7.1) lim
n→∞

φi,n(x)

n
= lim

n→∞

1

n
log si(dxf

n) = λi(x).

It was proved by Barreira and Gelfert [BG, Proposition 4] that if the dynamical system f has
dominated splitting (see [B3, p.234] for a precise definition) and Λ is compact then the sequences
{φi,n}∞n=1 are almost-additive. The methods developed in this article allow us to study the singular
value function in a broader context. In particular, it is a consequence of the variational principle
that

Proposition 7.2. Let (f,Λ) be a non-conformal repeller that can be coded by an irreducible
countable sofic shift. If the singular value functions Φ satisfy (C2), (C3) and (C4), then there exists
a unique invariant ergodic Gibbs measure µ for Φ.

We stress that Gibbs measures are of particular importance in the dimension theory of dynamical
systems.
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Grupo de investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Ciencias Básicas,
Universidad del B́ıo-B́ıo, Avenida Andrés Bello 720, Chillán, Chile

E-mail address: yyayama@ubiobio.cl


