Spectral properties of horocycle flows for compact surfaces of constant negative curvature

Rafael Tiedra de Aldecoa

Pontifical Catholic University of Chile

Santiago, May 2017
Table of Contents

1. Commutator methods
2. Flows
3. Minimal W^u flows
4. Mourre estimate
5. References
Commutator methods

- \mathcal{H}, Hilbert space with norm $\| \cdot \|$ and scalar product $\langle \cdot, \cdot \rangle$
- $\mathcal{B}(\mathcal{H})$, set of bounded linear operators on \mathcal{H}
- $\mathcal{K}(\mathcal{H})$, set of compact operators on \mathcal{H}
- A, H, self-adjoint operators in \mathcal{H} with domains $\mathcal{D}(A), \mathcal{D}(H)$, spectral measures $E^A(\cdot), E^H(\cdot)$, and spectra $\sigma(A), \sigma(H)$
Commutator methods

Definition

$S \in \mathcal{B}(\mathcal{H})$ satisfies $S \in C^k(A)$ if the map

$$\mathbb{R} \ni t \mapsto e^{-itA} S e^{itA} \in \mathcal{B}(\mathcal{H})$$

is strongly of class C^k.

$S \in C^1(A)$ if and only if

$$\left| \langle \varphi, S A \varphi \rangle - \langle A \varphi, S \varphi \rangle \right| \leq \text{Const.} \| \varphi \|^2 \quad \text{for all } \varphi \in \mathcal{D}(A).$$

The bounded operator associated to the continuous extension of the quadratic form is denoted by $[S, A]$, and

$$[iS, A] = s- \frac{d}{dt} \bigg|_{t=0} e^{-itA} S e^{itA} \in \mathcal{B}(\mathcal{H}).$$
Definition

A self-adjoint operator H is of class $C^k(A)$ if $(H - z)^{-1} \in C^k(A)$ for some $z \in \mathbb{C} \setminus \sigma(H)$.

If H is of class $C^1(A)$, then

$$[A, (H - z)^{-1}] = (H - z)^{-1}[H, A](H - z)^{-1},$$

with $[H, A]$ the operator from $\mathcal{D}(H)$ to $\mathcal{D}(H)^*$ corresponding to the continuous extension to $\mathcal{D}(H)$ of the quadratic form

$$\mathcal{D}(H) \cap \mathcal{D}(A) \ni \varphi \mapsto \langle H\varphi, A\varphi \rangle - \langle A\varphi, H\varphi \rangle \in \mathbb{C}.$$
Theorem (Mourre 1981, and others in the 1990’s)

Let \(H \) be of class \(C^2(A) \). Assume there exist a bounded Borel set \(I \subset \mathbb{R} \), a number \(a > 0 \) and \(K \in \mathcal{K}(\mathcal{H}) \) such that

\[
E^H(I)[iH, A]E^H(I) \geq aE^H(I) + K. \tag{★}
\]

Then, \(H \) has at most finitely many eigenvalues in \(I \) (multiplicities counted), and \(H \) has no singular continuous spectrum in \(I \).

- The inequality (★) is called a Mourre estimate for \(H \) on \(I \).
- The operator \(A \) is called a conjugate operator for \(H \) on \(I \).
- If \(K = 0 \), \(H \) has purely absolutely continuous spectrum in \(I \cap \sigma(H) \).
Let M be a smooth manifold with probability measure μ, and $\{F_t\}_{t \in \mathbb{R}}$ a C^1 measure preserving flow on M with C^0 vector field X_F.

Ergodicity, weak mixing and strong mixing of $\{F_t\}_{t \in \mathbb{R}}$ with respect to μ are expressible in terms of the self-adjoint operator $H_F := iX_F$ in $L^2(M, \mu)$.

- $\{F_t\}_{t \in \mathbb{R}}$ is ergodic if and only if 0 is a simple eigenvalue of H,
- $\{F_t\}_{t \in \mathbb{R}}$ is weakly mixing if and only if H_F has purely continuous spectrum in $\mathbb{R} \setminus \{0\}$.
- $\{F_t\}_{t \in \mathbb{R}}$ is strongly mixing if and only if
 \[
 \lim_{t \to \infty} \langle \varphi, e^{-itH_F} \varphi \rangle = 0 \quad \text{for all } \varphi \in \{C \cdot 1\}^\perp.
 \]

\[
\begin{array}{cccc}
\text{a.c. spectrum in } \{C \cdot 1\}^\perp & \Rightarrow & \text{strong mixing} & \Rightarrow \text{weak mixing} & \Rightarrow \text{ergodicity}
\end{array}
\]
Minimal W^u flows

- M, compact connected Riemannian manifold with distance d,
- $\{f_t\}_{t \in \mathbb{R}}$, $C^{1+\varepsilon}$ Anosov flow on M; that is, a $C^{1+\varepsilon}$ flow on M without fixed points, with three submanifolds $W^u(x)$, $W^s(x)$, $\text{Orb}(x)$ passing through each $x \in M$,

$$W^u(x) = \left\{ y \in M \mid \lim_{t \to -\infty} d(f_t(x), f_t(y)) = 0 \right\} \quad \text{unstable manifold},$$

$$W^s(x) = \left\{ y \in M \mid \lim_{t \to +\infty} d(f_t(x), f_t(y)) = 0 \right\} \quad \text{stable manifold},$$

$$\text{Orb}(x) = \left\{ f_t(x) \mid t \in \mathbb{R} \right\} \quad \text{orbit},$$

with respective tangent spaces E^u_x, E^s_x, E_x continuous in x and satisfying

$$T_x M = E^u_x \oplus E^s_x \oplus E_x.$$

The flow $\{f_t\}_{t \in \mathbb{R}}$ has a C^ε vector field X_f.
Assume that $\{f_t\}_{t \in \mathbb{R}}$ is a codimension 1 Anosov flow. More specifically:

$\{W^u(x)\}_{x \in M}$ is a 1-dimensional orientable C^0 foliation of M (in particular each $W^u(x)$ is a curve), which supports a C^0 minimal flow $\{\phi_s\}_{s \in \mathbb{R}}$ whose orbits are the unstable manifolds.\(^1\)

$\{\phi_s\}_{s \in \mathbb{R}}$ is called minimal W^u flow or minimal W^u parametrisation.

\(^1\)A flow on a compact metric manifold is minimal if each of its orbit is dense.
Example

The iconic example of Anosov flow $\{f_t\}_{t \in \mathbb{R}}$ and W^u flow $\{\phi_s\}_{s \in \mathbb{R}}$ are the geodesic flow and the horocycle flow on the unit tangent bundle of a compact connected orientable surface of (possibly variable) negative curvature.
Geodesic flow in the Poincaré half plane
Positive horocycle flow in the Poincaré half plane
(from Bekka/Mayer’s book)
Geodesics and horocycles in the Poincaré half plane
(from Hasselblatt/Katok’s book)
Anosov stable and unstable foliations for the geodesic flow on the unit tangent bundle of a surface of constant negative curvature

(from http://kyokan.ms.u-tokyo.ac.jp/~showroom/)
Some facts from [Marcus 75], [Marcus 77], [Bowen-Marcus 77]:

(i) $\{\phi_s\}_{s \in \mathbb{R}}$ is uniquely ergodic w.r.t. a probability measure μ on M.

This means that for any $h \in C(M)$ we have

$$
\lim_{t \to \infty} \frac{1}{t} \int_0^t ds \ (h \circ \phi_s)(x) = \int_M d\mu(y) \ h(y)
$$

uniformly in $x \in M$.

(ii) There exists $s^* : \mathbb{R} \times \mathbb{R} \times M \to \mathbb{R}$ such that

$$(f_t \circ \phi_s \circ f_{-t})(x) = \phi_{s^*(t,s,x)}(x), \quad s, t \in \mathbb{R}, \ x \in M,$$

(the Anosov flow $\{f_t\}_{t \in \mathbb{R}}$ expands the W^u orbits).
(iii) \(\{ W^u(x) \}_{x \in M} \) admits a \(C^0 \) parametrisation \(\{ \tilde{\phi}_s \}_{s \in \mathbb{R}} \) such that

\[
 f_t \circ \tilde{\phi}_s \circ f_{-t} = \tilde{\phi}_{\lambda^t s}, \quad s, t \in \mathbb{R}, \quad \lambda > 1 \quad \text{(that is, } s^*(t, s, x) = \lambda^t s) \]

(uniformly expanding parametrisation).

(iv) \(\{ \tilde{\phi}_s \}_{s \in \mathbb{R}} \) is uniquely ergodic w.r.t. a probability measure \(\tilde{\mu} \) given in terms of \(\mu \).

(v) \(\tilde{\mu} \) is invariant under the Anosov flow \(\{ f_t \}_{t \in \mathbb{R}} \).
Assumption 1

\(\{ \phi_s \}_{s \in \mathbb{R}} \) is \(C^1 \), and \(\{ \tilde{\phi}_s \}_{s \in \mathbb{R}} \) is a \(C^1 \) reparametrisation of \(\{ \phi_s \}_{s \in \mathbb{R}} \).

Under this assumption, we have:

- \(\tilde{\mu} = \mu / \tilde{\rho} \) with \(\tilde{\rho} = \rho \int_M d\mu \rho^{-1} \) and \(\rho \in C(M; (0, \infty)) \).

- The group in \(\mathcal{H} := L^2(M, \mu) \) given by
 \[
 U_s^\phi \varphi := \varphi \circ \phi_s, \quad s \in \mathbb{R}, \ \varphi \in \mathcal{H},
 \]
 is strongly continuous, unitary, with essentially self-adjoint generator
 \[
 H_\phi \varphi = iX_\phi \varphi, \quad \varphi \in C^1(M),
 \]

- The group in \(\mathcal{H} \) given by
 \[
 U_t^f \varphi := \varphi \circ f_t, \quad t \in \mathbb{R}, \ \varphi \in \mathcal{H},
 \]
 is strongly continuous, but not unitary if \(\rho \neq 1 \).
Assumption 2

The derivative

\[u_{t,s}(x) := (\partial_1 \partial_2 s^*)(t, s, x) \]

exists and is continuous in \(s, t \in \mathbb{R} \) and \(x \in M \).

Under this assumption, using the unique ergodicity of \(\{\phi_s\}_{s \in \mathbb{R}} \), Marcus has proved that \(\{\phi_s\}_{s \in \mathbb{R}} \) is strongly mixing w.r.t. \(\mu \). Therefore,

\[H_\phi \text{ has purely continuous spectrum in } \mathbb{R} \setminus \{0\}. \]

So, let’s prove that \(H_\phi \) has purely absolutely continuous spectrum in \(\mathbb{R} \setminus \{0\} \) under some additional regularity assumption.
Mourre estimate

Assumption 3

\[X_f \text{ and } X_\phi \text{ are } C^1, \ X_f(\rho) \in C(M) \text{ and } \rho^{-1}X_f(\rho) \in C^1(M). \]

Intuitively, the conjugate operator is constructed as follows:

1) Sum \(2iX_f \) and its “divergence” \(i\rho^{-1}X_f(\rho) \) to get a symmetric operator \(2iX_f + i\rho^{-1}X_f(\rho) \) on \(C^1(M) \).

2) Take the Birkhoff average of \(2iX_f + i\rho^{-1}X_f(\rho) \) along the flow \(\{\phi_s\}_{s \in \mathbb{R}} \) to take into account the unique ergodicity of \(\{\phi_s\}_{s \in \mathbb{R}} \).
Proposition (Conjugate operator)

Suppose that Assumptions 1, 2, 3 are satisfied. Then, the operator

\[
A_t \varphi := \frac{1}{t} \int_0^t ds \, U_s^\phi (2iX_f + i\rho^{-1}X_f(\rho)) U_{-s}^\phi \varphi, \quad t > 0, \, \varphi \in C^1(M),
\]

is essentially self-adjoint in \(\mathcal{H} \).

Idea of the proof.

The operator \(2iX_f + i\rho^{-1}X_f(\rho) \) is symmetric on \(C^1(M) \), and the operations \(U_s^\phi(\cdots)U_{-s}^\phi \) and \(\frac{1}{t} \int_0^t ds \, (\cdots) \) preserve this property. So, \(A_t \) is symmetric on \(C^1(M) \).

Furthermore, \(A_t \) can be written as \(i(X_t + g_t) \) on \(C^1(M) \), with \(X_t \) a \(C^1 \) vector field and \(g_t \in C^1(M; \mathbb{R}) \).

Operators of this type are essentially self-adjoint on \(C^1(M) \).
With some calculations on $C^1(M)$ using properties of the flows $\{f_t\}_{t \in \mathbb{R}}$, $\{\phi_s\}_{s \in \mathbb{R}}$, $\{\bar{\phi}_s\}_{s \in \mathbb{R}}$ and the function $u_{t,s}(x) = (\partial_1 \partial_2 s^*)(t, s, x)$, we obtain the following:

Lemma (Regularity of H_ϕ)

Suppose that Assumptions 1, 2, 3 are satisfied. Then, for $t > 0$ we have $(H_\phi - i)^{-1} \in C^2(A_t)$, and

$$[i(H_\phi - i)^{-1}, A_t] = 2(H_\phi - i)^{-1} c_t H_\phi (H_\phi - i)^{-1} - [(H_\phi - i)^{-1}, c_t]$$

with

$$c_t := \frac{1}{t} \int_0^t ds \left(u_{0,0} \circ \phi_s \right).$$
Because of the general formula
\[
[i(H - z)^{-1}, A] = -(H - z)^{-1}[iH, A](H - z)^{-1},
\]
we infer from the lemma that
\[
E^{H\phi}(I)[iH\phi, -A_t] E^{H\phi}(I) = 2E^{H\phi}(I)c_t H\phi E^{H\phi}(I) - (H\phi - i)E^{H\phi}(I)[(H\phi - i)^{-1}, c_t] (H\phi - i) E^{H\phi}(I)
\]
for each bounded Borel set \(I \subset \mathbb{R} \).
Can we get some positivity out of the last equation?
Proposition (Mourre estimate)

Suppose that Assumptions 1, 2, 3 are satisfied, and take $I \subset (0, \infty)$ compact with $I \cap \sigma(H_\phi) \neq \emptyset$. Then, there exist $t > 0$ and $a > 0$ such that

$$E^{H_\phi}(I)[iH_\phi, -A_t]E^{H_\phi}(I) \geq aE^{H_\phi}(I).$$

A similar result holds for $I \subset (-\infty, 0)$.

Idea of the proof.

The unique ergodicity of $\{\phi_s\}_{s \in \mathbb{R}}$ w.r.t. μ implies that

$$\lim_{t \to \infty} c_t = \lim_{t \to \infty} \frac{1}{t} \int_0^t ds \left(u_{0,0} \circ \phi_s\right) = \int_M d\mu u_{0,0}$$

uniformly on M. Moreover, some calculations show that

$$\int_M d\mu u_{0,0} = \ln(\lambda) > 0.$$
Idea of the proof (continued).

So, one has for $t > 0$ large enough

$$E^{H_\phi}(I)[iH_\phi, -A_t] E^{H_\phi}(I)$$

$$= 2 E^{H_\phi}(I) c_t H_\phi E^{H_\phi}(I)$$

$$- (H_\phi - i) E^{H_\phi}(I) [(H_\phi - i)^{-1}, c_t - \ln(\lambda)] (H_\phi - i) E^{H_\phi}(I)$$

$$\approx 2 E^{H_\phi}(I) \ln(\lambda) H_\phi E^{H_\phi}(I)$$

$$\geq 2 \ln(\lambda) \inf(I) E^{H_\phi}(I)$$

which gives

$$E^{H_\phi}(I)[iH_\phi, -A_t] E^{H_\phi}(I) \geq a E^{H_\phi}(I) \quad \text{with} \quad a \in (0, 2 \ln(\lambda) \inf(I)).$$
Using Mourre’s theorem, we conclude that:

Theorem (Absolutely continuous spectrum)

Suppose that Assumptions 1, 2, 3 are satisfied. Then, H_ϕ has purely absolutely continuous spectrum, except at 0, where it has a simple eigenvalue with eigenspace $\mathbb{C} \cdot 1$.

- The theorem applies in particular to generators of reparametrisations of the horocycle flow on the unit tangent bundle of a compact connected orientable surface of **constant** negative curvature.

- For reparametrisations of the horocycle flow on the unit tangent bundle of a compact connected orientable surface of **variable** negative curvature the question is open.
Gracias !

• R. Tiedra de Aldecoa. Spectral analysis of time changes of horocycle flows. J. Mod. Dyn., 2012

• R. Tiedra de Aldecoa. Spectral properties of horocycle flows for compact surfaces of constant negative curvature. Proyecciones, 2017