Hoy $X = \text{superficie suave proyectiva compleja (múltiplas rectas)}$

$D = \text{divisor efectivo } = \sum_{i=1}^{r} D_i$, $D_i = \text{curva proyectiva suave y singularidades de } D$, a lo más nodos (localmente $f^* y = a y^r \in \mathbb{C}^2$)

Asumamos existencia de $n \geq 2$ entero positivo y $Z = \text{flechado de líneas}$

tal que $\mathbb{P}^n = \mathbb{P}(Z \otimes \cdots \otimes Z) \simeq \mathbb{P}(D)$.

En términos de divisores, $Z = \mathbb{Q}(M)$ para algún divisor M en X y así (*) significa $nM \sim D$ (nM es linealmente equivalente a D) o $nM - D = \text{div } f$ para alguna función racional $f: X \to \mathbb{P}^1$.

Asumamos que $(n, x_1, \ldots, x_r) = 1$. Así tenemos la construcción de la n-ésima de $D \subset X$:

$Y \xrightarrow{\text{resuelve}} X^1 = \text{Spec} \bigoplus_{i=0}^{n-1} \mathbb{Q}(x_i) \xrightarrow{\text{normaliza}} X = \text{Spec} \bigoplus_{i=0}^{n-1} \mathbb{Q}(x_i) \xrightarrow{\text{branched}} X \setminus D = \sum_{i=1}^{r} D_i$

$Y = \text{superficie suave proyectiva inexistente}$

branch de $f = D$, $X^1 = \text{superficie normal proyectiva}$

en singularidades sólo sobre los nodos de D del tipo

cíclico (sing. toros)

Como singularidades son (en particular) racionales, tenemos

numéricamente

$x^{(i)} \equiv \sum_{j} \left(\frac{r_i}{m} \right) x^{(j)}$

联

$X^{(i)} \equiv \sum_{j} \left(\frac{r_i}{m} \right) X^{(j)}$

联

$x^{(i)} \equiv \left(\frac{r_i}{m} \right) 0$

联

$f,y \equiv \text{H}^m (Y, \mathcal{O}_Y) \simeq \bigoplus_{i=0}^{n-1} \text{H}^m (X, \mathcal{O}(i))$

联

$X(Y, \mathcal{O}_Y) = n \text{H}(X, \mathcal{O}_X) + \sum_{i=1}^{r} \mathcal{O}^{(i)} (X^{(i)}) + N_X$
Uno puede calcular explícitamente la clase común de Y, donde

$$K_Y = \sum (K_X + \sum_{j=1}^{n} \left(1 - \frac{(n \lambda_j^2)}{n}\right) D_j) + \Delta$$

donde Δ tiene reporte en los cártenes de P que resuelven singularidades (a Δ es explícito también, pero no quiero escribirlo.

El caso si los divisores D_j son disjuntos $\Rightarrow X^1$ es suave (y así es Y) y los invariantes numéricos principales son

$$K_Y = n K_X - \sum_{j=1}^{n} \frac{n^2 - (n \lambda_j^2)}{n} D_j + \sum_{j=1}^{n} \left(n - (n \lambda_j^2)\right) (g(D_j) - 1)$$

$$K_Y^2 = n K_X^2 - \sum_{j=1}^{n} \frac{n^2 - (n \lambda_j^2)^2}{n} D_j + 4 \sum_{j=1}^{n} \left(n - (n \lambda_j^2)\right) (g(D_j) - 1)$$

$$e(Y) = \text{cuestión top. de Euler} = n e(X) + \sum_{j=1}^{n} \left(n - (n \lambda_j^2)\right) (g(D_j) - 1)$$

Notar que por supuesto $12 X = K^2 + e$ (Fórmula de Abetti).

Ejemplo: $\{D_j\} = \text{líneas en } \mathbb{P}^2$ y la suma $\sum_{j=1}^{n} \lambda_j = n$ para que tener la condición $\sum_{j=1}^{n} D_j n \text{ línea }$. Deben ser $(n, \lambda_1, \ldots, \lambda_n) = 1$ también. Problema es que pueden haber singulares que nodos no \Rightarrow blow-up cuando uno de ellos \Rightarrow

En la nueva superficie consideramos

$$D = \sum_{j=1}^{n} h_j D_j + \sum_{j=1}^{n} \left(1 + \frac{1}{\lambda_j^2}\right) E_j$$

\Rightarrow tenemos $Y \xrightarrow{\phi} X$ lo simpático es considerar en \mathbb{P}^2 un pencil trivial \Rightarrow a través de un punto suelta de D \Rightarrow este pencil se levanta a Y como pencil de curvas que se curvan hacia \mathbb{P}^1. Así se pueden nublar sus degeneraciones estables.
Si \(\varphi = 1 \) para todo \(j \) (se \(D \) es divisor reducido)

\[
K_Y^2 = nK_X^2 + (n-1)^2D^2 + 2(n-1)D\cdot K_X
\]

\[
e(Y) = n e(X) + (n-1)(D^2 + D\cdot K_X)
\]

\[
\chi(Y, O_Y) = n \chi(X, O_X) + \frac{(n-1)(2n-1)}{12n} D^2 + \frac{(n-1)D\cdot K_X}{4}
\]

→ **Cubiertas dobles**: Aísbe con \(n = 2 \) y \(\varphi = 1 \) \(\forall j \).

El cubrimiento doble sobre cada ruedo se ve como \(\mathbb{P}^1 \times \mathbb{P}^1 \) \(\subseteq \mathbb{P}^3 \).

Esta singularidad es precisa de \(\mathbb{C}^2 \times \mathbb{C}^2 \) \(\subseteq \mathbb{C}^4 \) (mínimo polinomio

(1) 2

mínimo)

\(\mathbb{C}^2 \times \mathbb{C}^2 \) es conocida como modo con la notación \(A_1 \).

Su resolución es la más simple posible

\[
-2 \rightarrow \Delta
\]

(1) 2

(esto dice, la curva de reemplazar el punto singular por

\(\Delta \) \(\mathbb{P}^1 \times \mathbb{P}^1 \) con \(-2 \).

Para "vert" hacer la reducción de \(\mathbb{C}^3 \) en

(0,0,0) \(\Delta \) y ver que sucede con \(z^2 = x \gamma \).

Ej: Un número par de líneas en \(\mathbb{P}^2 \) produce una superficie \(X \) con

\((\frac{2k}{2}) = s_{(2k-1)} \) la superficie \(Y \) contiene entonces

\(s_{(2k-1)} \) \(\mathbb{P}^1 \times \mathbb{P}^1 \) con automorfismo \(-2 \) y disjuntos.

Ej: En un cubrimiento doble, siempre por resolución de los singularidades

de un \(D \) unido (en el ejemplo de un anillo de líneas rígida), podemos

modificar la situación a un cubrimiento doble con bruch, compuestos

de curvas disjuntas.

→ **Siempre** \(\sqrt{2}M \cdot D \Rightarrow K_Y = 2K_X + 2M + 4M \cdot K_X\)

\[
e(Y) = 2e(X) + 4M^2 + 2M\cdot K_X
\]

\[
\chi(Y, O_Y) = 2\chi(X, O_X) + M^2 + M\cdot K_X
\]

Ej: \(C_4 \) recta en plano plane \(\Rightarrow C_4 \sim 2C_3 \)

\(\Rightarrow C_3 = M \)

\(\Rightarrow K_Y \sim f(K_X + \frac{1}{2}C_6) \sim 0 \)

\(e(2) = 2 \cdot 3 + 4 \cdot 9 + 2 \cdot -9 = 24 \)

\(\chi(K_X) = 2 \) ... \(Y \) = superície K3
Si la cónica tiene un nodo,

Sobre el K3 correspondiente tenemos una fibra cónica donde las fibras vienen dados por las líneas.

El Kummer (con $k = 2$) tiene una superficie cónica con una reducción principal inmediuta $(\rightarrow \mathbb{P} \times \mathbb{P} \cong \mathbb{P}^3) \rightarrow X \overset{2:1}{\rightarrow} \text{Kum}(X) \subset \mathbb{P}^3$.

La función $\text{Kum}(X)$ es una cónica con 16 singularidades A_1.

Notar que estos X no son $\text{Sec}(\mathbb{P}^1)$ para $\mathbb{P}^1 = \mathbb{P}^1$.

Si por otro lado $Y = E_1 \times E_2$ con E_1, E_2 curvas elípticas,

$Y \overset{2:1}{\rightarrow} \text{Kum}(Y) \overset{2:1}{\rightarrow} \mathbb{P}^1 \times \mathbb{P}^1 = Y / \mathbb{Z} \times \mathbb{Z} \cong \mathbb{Z}^2 \leq E_i$.

La involución hiperelíptica $(E_i \rightarrow E_i / \mathbb{Z} \cong \mathbb{P}^1)$. Entonces $\text{Kum}(Y) \overset{2:1}{\rightarrow} \mathbb{P}^1 \times \mathbb{P}^1$.

Es un calzamiento doble como antes con $X = \mathbb{P}^1 \times \mathbb{P}^1$, $\text{Kum}(Y) = X' = X''$.

El D es

$D = \sum_{i=1}^{2k} F_i = D = 4F_a + 4F_v = 2(2F_a + 2F_v)$

y por eso los 16 A_1.

Obviamente algunas veces $X = Y$ para algunos E_1, E_2 (relacionados entre ellos) o al menos X seco a Y.

Se puede probar que todos $\text{Kum} (\text{Sec} \mathbb{P}^1) \subset \mathbb{P}^3$, proyección $\overset{2:1}{\rightarrow} \mathbb{P}^2$ donde un nodo y el brinco D es un enredo de 6 líneas tangentes a una cónica.

El mejor se resuelve resolviendo ese nodo: $Bl_{\text{Sec} \mathbb{P}^1} (X) \overset{2:1}{\rightarrow} \mathbb{P}^2$.

Y así

$z \rightarrow \mathbb{P}^2 \rightarrow \mathbb{P}^2$.

Luego $q^*(\text{línea}) = E + F$ con $E^2 = F^2 = -2$, $E : F = 6$.

El $q^*(\text{línea}) = 2F_a$, y con $\mathbb{P}^2 \rightarrow \mathbb{P}^1$ conteniendo 5 redes más intersección transversal de E.

Recuperar \mathbb{P} como $q^*(\mathbb{P})$.