Club de Matemática

Con el objetivo de compartir, entretener, divulgar y disfrutar la belleza de las ideas Matemáticas, comenzará a funcionar el Club de la Matemática en la Facultad de Matemáticas de la UC. 

Se trata de charlas de interés matemático amplio, de carácter no tradicional, motivacionales y orientadas a público general. Estas tendrán una duración de 45 minutos y serán dictadas por profesores, postdoctorados, o estudiantes de pre o postgrado de nuestra facultad. Los encuentros terminarán con una convivencia. 

2024-10-11
16:10hrs.
Israel Morales. Ufro
El grafo de curvas y su influencia en la teoría de mapping class group
Auditorio Ninoslav Bralic
Abstract:
El grafo de curvas de una superficie fue introducido por Harvey en los años 60’s como un objeto natural en donde actúa el mapping class group de una superficie. Desde entonces el uso de este grafo (y sus variantes) ha sido usado para obtener resultados de variada naturaleza de estos grupos. Esta charla tiene por objetivo explicar un poco de la relación (desde el punto de vista algebraico) que tiene el grafo de curvas con el mapping class group.
http://clubdematematica.mat.uc.cl/
2024-09-06
16:10hrs.
Daniel Barrera. Usach
Sobre el problema 3x+1
Auditorio Ninoslav Bralic
Abstract:
El objetivo de esta charla es explicar un juego con números muy sencillo que sin embargo genera un problema suficientemente complicado como para aún no estar resuelto. La única regla del juego es: si el número es par entonces hay que dividirlo por 2, pero si es impar entonces hay que multiplicarlo 3 y luego sumarle 1.  Trataremos de jugar este juego con algunos números y explicaremos un desafío que naturalmente aparece. Al final trataremos de dar algún sabor de algunos avances relacionados con este tema.
http://clubdematematica.mat.uc.cl/club.html
2024-06-28
16:10hrs.
Mario Ponce. UC
Reflexiones en conjuntos equidistantes
Facultad de matemáticas, sala multiusos
Abstract:
Durante esta sesión del Club vamos a revisitar el concepto de reflexión (o rebote) sobre una curva, concentrándonos en las reflexiones sobre las clásicas secciones cónicas y sus aplicaciones más notables (telecomunicaciones, astronomía, salud, entre otras áreas). Si bien es ampliamente sabido que la parábola se puede describir como un conjunto que equidista de una recta y punto fuera de ella, recordaremos que esta propiedad de equidistancia es compartida por las demás secciones cónicas.  Así, será natural explorar las propiedades reflexivas sobre curvas obtenidas como conjuntos equidistantes. Esta perspectiva nos permitirá demostrar de manera directa las propiedades reflexivas de las cónicas y extender este resultado a conjuntos equidistantes en general. 
http://clubdematematica.mat.uc.cl/
2024-06-14
16:10hrs.
Rodolfo Gutiérrez. CMM
Números, curvas y secuencias: Explorando el espectro de Lagrange
Sala multiuso primer piso
Abstract:
¿Se puede aproximar un número irracional por números racionales sencillos? El espectro de Lagrange es un conjunto fractal de números reales que da una respuesta esta pregunta, y que sorprendentemente tiene relaciones profundas con la geometría hiperbólica y los sistemas dinámicos. En esta charla, contaremos la historia de este objeto y mostraremos algunos resultados recientes sobre su estructura.
http://clubdematematica.mat.uc.cl/club.html
2024-05-10
16:10hrs.
Juan Pablo Moraga. Ey
Matemáticas, Moneda y Más Allá
Facultad de matemáticas, sala multiusos
Abstract:
Exploraremos la intersección entre las matemáticas y Bitcoin como la moneda digital, un fenómeno que está redefiniendo nuestra comprensión del valor y la transacción económica. Comenzaremos con una revisión de los fundamentos del dinero para entender cómo Bitcoin se construye sobre estas bases y luego se desvía hacia un paradigma distinto con su tecnología de cadena de bloques. Profundizaremos en la arquitectura técnica de Bitcoin, explicando el concepto del timechain y cómo su red descentralizada asegura la integridad y la cronología de las transacciones. Abordaremos la política monetaria única de Bitcoin, destacando cómo su finitud impacta en la ley de oferta y demanda. Finalmente, discutiremos las implicaciones más amplias de Bitcoin en contextos globales como la guerra, la desigualdad y el crecimiento económico, proponiendo una reflexión sobre cómo esta tecnología podría moldear el futuro financiero y social. Esta charla invita a estudiantes y profesores a un diálogo crítico sobre el papel de las matemáticas en las nuevas formas de dinero digital.
http://clubdematematica.mat.uc.cl/
2024-04-19
16:10hrs.
Giancarlo Lucchini. Universidad de Chile
Salvando el Teorema
1er. piso Edificio Felipe Villanueva
Abstract:
Al hablar con un matemático de su trabajo (o del trabajo de sus colegas), uno podría sorprenderse ante el vocabulario utilizado. En lugar de "correcto", "lógico", o "preciso", uno se encuentra con palabras como "bello" o "elegante". Si bien uno podría pensar que la apreciación de esta belleza o elegancia es un placer reservado a los iniciados, en esta charla veremos que esta sensación se puede tener desde la infancia. Mediante tres ejemplos de niveles crecientes y áreas distintas (geometría en 2do básico, álgebra en enseñanza media, teoría de números en licenciatura), veremos cómo este sentimiento se cristaliza como las "ganas de salvar un teorema". Así, veremos que "salvar un teorema" resulta ser una fuente enorme de creación en matemáticas.
http://clubdematematica.mat.uc.cl/
2024-03-14
16:10hrs.
Santiago Saglietti. UC
Al barajar cartas, ¿7 es número ganador?. 
Facultad de matemáticas, sala multiusos
Abstract:
¿Cuántas veces es necesario barajar un mazo de cartas para que esté bien mezclado? En un artículo del New York Times de 1990, titulado ”Al barajar cartas, el 7 es número ganador”, su autor Kolata escribe ”los matemáticos Bayer y Diaconis han demostrado que sólo hace falta barajar siete veces un mazo, de manera ordinaria, para que esté bien mezclado. Menos de siete no es suficiente y hacerlo ms de siete no produce mejoras significativas”. En esta charla vamos a intentar explicar de manera elemental la matemática detrás de barajar un mazo de cartas, qué fue exactamente lo que probaron Bayer y Diaconis y que hay de cierto en las palabras de Kolata.
http://clubdematematica.mat.uc.cl/
2023-11-24
16:10hrs.
Jennifer Wagner . Washburn University
How NOT to Solve the Four Color Problem: The Chromatic Polynomial
Sala multiusos primer piso
Abstract:

Can you color a map with four colors?  It seems like a simple question, but it’s not!  Trying to solve this Four Color Problem led to lots of beautiful mathematics, including the chromatic polynomial of a graph.  Although the chromatic polynomial didn’t help solve the problem that inspired it, it is interesting in its own right.  We’ll explore some of the history and features of this important polynomial.

 

http://clubdematematica.mat.uc.cl/
2023-10-20
16:10hrs.
Laura Jiménez. CMM
La geometría del origami
Facultad de matemáticas, sala multiusos
Abstract:
El milenario arte de doblar papel conocido como origami, o papiroflexia, es un divertido recurso para visualizar y enseñar matemáticas. Pero además de entretenimiento y belleza, el origami nos provee de matemáticas únicas que les revelaré en esta charla. Comenzaré hablando sobre los axiomas de constructibilidad del origami y de cómo esta geometría nos permite resolver problemas tales como la trisección de un ángulo. Luego, mostraré algunos ejemplos de cómo utilizar el origami como estrategia de aprendizaje de la geometría y, finalmente, les hablaré de algunas aplicaciones del origami en distintos campos de la ciencia y la tecnología.
http://clubdematematica.mat.uc.cl/
2023-09-29
16:10hrs.
Pablo Groisman. UBA
Nada es lo que parece en la n-ésima dimensión: maldiciones y bendiciones de los espacios euclídeos de dimensión alta.
Sala multiuso primer piso
Abstract:
Es bien sabido que podemos identificar los espacios euclídeos de dimensión 1, 2 y 3 con la recta, el plano y el espacio respectivamente. Esta poderosa identificación, que nos dió Descartes en 1637, nos permite interpretar geométricamente los subconjuntos de estos espacios. Cuando la dimensión es mayor a tres ya no tenemos esta identificación con el espacio físico, pero entender geométricamente a los objetos de esos espacios es de suprema importancia en muchísimas áreas de la matemática y otras disciplinas. En esta charla nos enfocaremos en dos en particular: inteligencia artificial y mecánica estadística. En el primer caso, suele pasar que debemos lidiar con espacios de dimensión aproximadamente 10^10, mientras que en el segundo suelen tener orden 10^23.
 
Como no podemos "ver" en esas dimensiones, solemos extender nuestro conocimiento del espacio físico tridimensional para ganar intuición más allá de n=3, pero veremos que puede ser que eso no sea una buena idea. Hablaremos de varios fenómenos que ocurren cuando la dimensión del espacio es alta (algunos bastante anti-intuitivos) y de sus consecuencias en mecánica estadística, aprendizaje automático y nuestras vidas. En el camino pasaremos por el fenómeno de concentración de la medida, los paseos al azar, ChatGPT, Borges, el problema del coleccionista de figuritas y el comportamiento microscópico de la materia.

http://clubdematematica.mat.uc.cl/
2023-08-18
16:10hrs.
María José Moreno. UC
La interrogante de la geometría ¿medir o no medir?"
Sala multiuso primer piso
Abstract:
Vivimos en un mundo donde podemos medir, pero imaginas no poder hacerlo, ¿qué tipo de geometría hubiese construido Euclides? ¿habría enunciado su “polémico” quinto postulado? ¿a quién hubiera intentado liberar de toda culpa, por el quinto postulado, el sacerdote jesuíta Gierolamo Saccheri? ¿Legendre, Gauss, Janos Bolyai, Farkas Bolyai, Lobachevsky, entre otros, habrían dedicado tiempo al estudio de las paralelas? ¿Hilbert hubiese axiomatizado la geometría y dado como trabajo de investigación a Max Dehn problemas donde se asumió que se podía medir?

 

Dada estas preguntas, es que en esta charla te contaremos que existen geometrías donde no podemos medir y mostraremos algunos modelos de estas.


http://clubdematematica.mat.uc.cl/
2023-07-14
16:00hrs.
Jeanette Shakalli . Fundapromat
Mis Travesuras en el Universo Matemático
Sala multiuso primer piso.
Abstract:
En esta charla, conoceremos las aventuras en el universo matemático de la Dra. Jeanette Shakalli, mujer matemática panameña, desde que era una niña pequeña curiosa hasta que llegó a ser expositora invitada en más de 90 conferencias magistrales, tanto en Panamá como en el extranjero. En esta travesía por la vida de la Dra. Shakalli, descubriremos varias sorpresas en el camino, incluyendo obstáculos que tuvo que vencer y fracasos que tuvo que superar. En particular, descubriremos la historia de cómo nació la Fundación Panameña para la Promoción de las Matemáticas (FUNDAPROMAT).
http://clubdematematica.mat.uc.cl/
2023-06-30
16:00hrs.
Pablo Barceló. UC
La Ley 0/1 para la Lógica de Primer Orden
Sala multiuso primer piso.
Abstract:
Comenzaremos con una introducción a la lógica de primer orden, para después 
demostrar su famosa propiedad conocida como "Ley 0/1". Suponga que ? es una oración 
en cierta lógica, y que definimos como μn(Φ) la probabilidad de que una estructura con n elementos satisfaga Φ. La Ley 0/1 establece que si ? es expresable en la lógica de primer orden, entonces 
limn → ∞ μn(Φ) es 0 o 1. Esto demuestra que la lógica de primer orden solo puede expresar propiedades triviales con respecto a la cardinalidad de una estructura, y en particular no puede determinar la paridad del número de elementos en su dominio. 

http://clubdematematica.mat.uc.cl/
2023-05-26
16:00hrs.
Mauricio Bustamante y Andrés Morán . UC
De lo perfecto a lo insoluble
1er. piso Edificio Felipe Villanueva
Abstract:
Cuando vamos al colegio nos enseñan una fórmula para calcular las raíces complejas de cualquier polinomio de grado 2 en términos de sus coeficientes, usando únicamente las operaciones aritméticas básicas. Después, si uno habla con la persona correcta, ésta le dice que hay una fórmula análoga que da las soluciones de cualquier ecuación polinomial de grado 3 o 4. Pero nadie nos enseña la fórmula de este tipo para las raíces un polinomio de grado 5. Y no es que no nos la quieran mostrar, es que no existe. Esto se debe a que A_5 es un grupo perfecto. En esta charla hablaremos sobre estas ecuaciones, porqué se ven como se ven y porqué no existen cuando no existen.
 
 

http://clubdematematica.mat.uc.cl/
2023-04-21
16:00 hrshrs.
Rayssa Caju . CMM
Poincaré conjecture: the history of a millennium problem
Facultad de matemáticas, sala multiusos
Abstract:
In this talk, we will revisit the history and understand some ideas regarding one of the most relevant topologic/geometric conjectures from the last century: the Poincaré conjecture.
Proposed by the French mathematician Henri Poincaré at the beginning of the twentieth century, and proved by the Russian Grigori Perelman in 2002/2003 (who rejected the Fields medal), this problem challenged generations of mathematicians and, up to this day, is the only Millennium problem to be solved.

http://clubdematematica.mat.uc.cl/
2023-03-31
16:00hrs.
Marcos Canedo Alcón. UC
Música y Matemáticas: Acciones Musicales del Grupo Dihedral
Edificio Felipe Villanueva
Abstract:
En esta charla se propone explorar la geometría, topología y simetrías existentes en la armonía musical, para poder comprender la estructura de distintas obras musicales.
Se presenta la geometría de las notas musicales, para construir un espacio de acordes de triadas en el cual se tienen dos acciones del grupo dihedral de orden 24. Se muestra que las dos acciones del grupo dihedral son duales y ésto se refleja en la música como una dualidad armónica de frases musicales.
A su vez, las acciones del grupo dihedral permiten definir dos topologías sobre el espacio de acordes que resultan ser toros, esto permite establecer una correspondencia entre obras musicales y trayectorias en el toro.

http://clubdematematica.mat.uc.cl/
2023-01-06
16:00hrs.
Constanza Rojas-Molina. Cy Cergy Paris Université
Dibujando matemáticas
Facultad de matemáticas, sala multiuso.
Abstract:
El dibujo y las matemáticas van de la mano como dos lenguajes visuales. Ambas disciplinas expresan ideas abstractas e interpretaciones de la realidad a través de símbolos. En esta charla comparto mi experiencia como matemática, ilustradora y "sketchnoter", ámbitos en los que la creatividad y la curiosidad son fundamentales. Esta es una una invitación a la audiencia a discutir sobre la barrera tradicional entre arte y ciencia, a pensar como prácticas que son estándares en el dibujo nos pueden ayudar en nuestra práctica de las matemáticas, y a explorar las ventajas del dibujo en el proceso de aprendizaje. Esta es una invitación a tomar el lápiz y dibujar las matemáticas que aprendemos y vemos alrededor nuestro!
http://clubdematematica.mat.uc.cl/
2022-11-25
16:00 hrs.
Esptiben Rojas Bernilla. Universidad de Magallanes
Los conjuntos, Hilbert y los Bourbaki
Sala multiuso primer piso
Abstract:
Actualmente la matemática está estructurada alrededor de un
concepto no definido por los(as) matemáticos(as): el conjunto.
Filosóficamente el formalismo matemático ideado por David Hilbert a
estructurado el cerebro de los(as) matemáticos(as), de tal forma de
hacer de la matemática un cuerpo de conocimiento a-histórico y a-
filosófico.
En esta charla contaremos los hechos históricos y reflexiones
filosóficas de los conjuntos y del formalismo hilbertiano. Además,
comentaremos del famoso grupo francés de matemáticos formalistas y
estructuralistas llamados “Los Bourbaki”, quienes han influido en
nuestra formación como matemáticos(as).
Finalmente, desde el ficcionismo formal de tránsito, daremos
respuesta a la pregunta filosófica ¿qué es la matemática?

http://clubdematematica.mat.uc.cl/
2022-11-11
16:00hrs.
Mauricio Duarte. Unab
Bolitas elásticas
Facultad de matemáticas, sala multiusos
Abstract:
Descripción: Un modelo bien sencillo para interacciones entre cuerpos es el de colisiones completamente elásticas. Como en el juego de las bolitas que se jugaba el siglo pasado. Tal vez conocen algún pinball, quizás. Si te diera 100 bolitas a las que pudieras dar posición y velocidad inicial, ¿cuántas colisiones podrías generar? En esta charla hablaremos de este problema, discutiremos ejemplos relevantes y problemas abiertos.
http://clubdematematica.mat.uc.cl/
2022-10-14
16:00hrs.
Rafael González D'león . Universidad Loyola Chicago
Coincidencias matemáticas: Euler, Catalan, y el doblado del ARN
Facultad de matemáticas, sala multiuso.
Abstract:
En esta charla nos preguntaremos sobre cual es la labor de las matemáticas y los matemáticos por medio de dos historias llenas de múltiples coincidencias que nos revelan como las matemáticas están conectadas con la naturaleza de nuestra realidad. Estas historias involucran a la estética, a rutas que atraviesan una ciudad, e incluso a las maquinas moleculares que componen a todos los seres vivos.
http://clubdematematica.mat.uc.cl/