Mauricio Godoy. Universidad de la Frontera
Grafos dirigidos y álgebras de Lie de paso 2
Sala 1
Abstract:
Las álgebras de Lie nilpotentes son objetos de gran interés en geometría diferencial y análisis geométrico. En este sentido, es importante tener diferentes formas de generar ejemplos importantes, y entender posibles interrelaciones con otras áreas de la matemática, puesto que problemas que aparecen en contextos diferentes pueden encontrar soluciones inesperadas al mirar un mismo objeto desde otras perspectivas.
En particular, la álgebra de derivaciones de un álgebra de Lie nilpotente gradada que preservan la gradación es de gran utilidad en el estudio de simetrías infinitesimales de sistemas diferenciales, en base a la teoría de prolongaciones de Tanaka.
En esta charla, presentaré una motivación de por qué estas álgebras interesan tanto a geómetras como analistas, y explicaré algunos de los resultados que hemos obtenido con Diego Lagos (Universidad de La Frontera) al respecto de una construcción reciente que asocia álgebras de Lie nilpotentes gradadas de paso dos a grafos dirigidos etiquetados. Podemos, a través del estudio del grafo dirigido, caracterizar ciertas sub-álgebras e ideales de estas, usando herramientas básicas de teoría espectral de grafos.