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Abstract. We introduce the notion of topological pressure for sus-
pension flows over countable Markov shifts, and we develop the associ-
ated thermodynamic formalism. In particular, we establish a variational
principle for the topological pressure, and an approximation property in
terms of the pressure on compact invariant sets. As an application we
present a multifractal analysis for the entropy spectrum of Birkhoff av-
erages for suspension flows over countable Markov shifts. The domain of
the spectrum may be unbounded and the spectrum may not be analytic.
We provide explicit examples where this happens. We also discuss the
existence of full measures on the level sets of the multifractal decompo-
sition.

1. Introduction

Our work is devoted to the study of suspension flows over countable
Markov shifts. In order to provide motivation, we first recall the notion
of suspension semiflow and its relation to the study of axiom A flows on
compact manifolds. It was shown by Bowen [5] and Ratner [14] that ax-
iom A flows on compact manifolds can be modeled by suspension flows over
Markov shifts with a finite alphabet, as a consequence of the existence of the
so-called Markov systems. Therefore, a detailed study of suspension flows
may provide important information about the dynamics of Axiom A flows.

An important assumption in these works is that the flow is defined on a
compact manifold. It was conjectured by Sinai that geodesic flows on non-
compact manifolds of negative curvature and finite volume have associated
a symbolic dynamics with countably many symbols. A similar situation
may occur in the context of nonuniformly hyperbolic dynamics. Thus, un-
derstanding the dynamics of suspension flows over countable Markov shifts
should provide important information, for example for geodesic flows on
noncompact manifolds of negative curvature. Progress in this direction was
achieved by Gurevich and Katok [9], who proved that the geodesic flow on
the modular surface can be modeled by a suspension flow over a countable
alphabet.

In this paper, motivated by these considerations, we study the ergodic
properties of suspension flows over countable Markov shifts. In particular,
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we develop a thermodynamic formalism for these flows. We also use it to
obtain a multifractal analysis of Birkhoff averages.

In the case of Markov shifts with a finite alphabet there is a canonical
identification between the invariant probability measures for the suspension
flow and the shift map (in the base of the flow); see Section 2.1 for details.
This relation was exploited by Bowen and Ruelle (see [6]) to prove that
the properties of the topological pressure for the suspension flow are similar
to those of the topological pressure for the Markov shift. In the case of
countable Markov shifts, a bijection between invariant probability measures
for the suspension flow and the shift on the base may not exist, because
the height function may not be integrable with respect to some measures
invariant under the shift. Therefore, the thermodynamic formalism for the
suspension flow need not to be related to the one on the base. Thus, one
needs to introduce a new topological pressure.

We propose a notion of topological pressure based on the Gurevich pres-
sure for countable Markov shifts (see the work by Sarig [15] and Section 2.2
for definitions), and on the relation used by Bowen and Ruelle to translate
problems for the flow into problems for the Markov shift. Our notion ex-
tends the notion of entropy for suspension flows over countable Markov shifts
introduced by Savchenko (see [17]), although he considered height functions
depending only on the first coordinate. We establish several properties of
the pressure, namely a variational principle (see Theorem 2) and an approx-
imation property in terms of the pressure on compact invariant sets (see
Theorem 1). Examples are provided in Section 4.

As an application of the above construction, we present a multifractal
analysis for the entropy spectrum of Birkhoff averages for suspension flows
over countable Markov chains (see Theorem 10). For this we also need to
introduce a notion of topological entropy on noncompact sets that in general
are not subsets of compact invariant sets (contrarily to what happens in
Bowen’s classical notion of topological entropy on noncompact sets). We
note that our notion of topological entropy is an extension both of Bowen’s
notion and of the topological entropy obtained from our notion of topological
pressure simply by considering the zero potential.

Our work on the multifractal analysis extends results obtained by Barreira
and Saussol [2, 3] and Pesin and Sadovskaya [13] for suspension flows over
finite Markov shifts as well as results by Iommi [10] for countable Markov
shifts. We recall that for suspension flows over finite Markov shifts the en-
tropy spectrum is analytic and has bounded domain. In strong contrast,
in the case of countable Markov shifts the spectrum may have unbounded
domain and need not be analytic. We give explicit examples where this
happens (see Section 5.4). We also provide a classification of the spectra for
which there exist full measures on the level sets of the multifractal decom-
position (see Theorem 12).

Acknowledgements. We would like to thank Claudia Valls for her help.
We also would like to thank the referees for the careful reading of our man-
uscript and for many suggestions.

2. Preliminaries
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2.1. Suspension flows and invariant measures. Let σ : Σ → Σ be a
one-sided Markov shift with a countable alphabet S. This means that there
exists a matrix (tij)S×S of zeros and ones (with no row and no column made
entirely of zeros) such that

Σ = {x ∈ SN0 : txixi+1 = 1 for every i ∈ N0},
and the shift map is defined by σ(x0x1 · · · ) = (x1x2 · · · ). Sometimes we
simply say that σ is a countable Markov shift. Let now τ : Σ → R+ be a
continuous function and consider the space

Y = {(x, t) ∈ Σ× R : 0 ≤ t ≤ τ(x)}, (1)

with the points (x, τ(x)) and (σ(x), 0) identified for each x ∈ Σ. The sus-
pension semiflow over σ with height function τ is the semiflow Φ = (ϕt)t≥0

on Y defined by

ϕt(x, s) = (x, s+ t) whenever s+ t ∈ [0, τ(x)].

In the case of two-sided Markov shifts we can define a suspension flow (ϕt)t∈R
in a similar manner.

We denote by MΦ the space of Φ-invariant probability measures on Y .
Recall that a measure µ on Y is Φ-invariant if µ(ϕ−1

t A) = µ(A) for every
t ≥ 0 and every measurable set A ⊂ Y . We also consider the space Mσ of σ-
invariant probability measures on Σ. Given a continuous function φ : Σ → R
we consider the set

Mσ(φ) :=

{
ν ∈ Mσ : −

∫

Σ
φ dν < ∞

}
.

One can easily verify that if ν is a σ-invariant measure on Σ, possibly infi-
nite, such that

∫
Σ τ dν < ∞ and m is the Lebesgue measure on R, then the

finite measure induced on Y by the product measure ν ×m is Φ-invariant.
Moreover, when τ is bounded away from zero there is a canonical identi-
fication between MΦ and Mσ(−τ). Namely, the map R : Mσ(−τ) → MΦ

defined by
R(ν) = (ν ×m)|Y /(ν ×m)(Y ) (2)

is a bijection. We note that if σ : Σ → Σ is a Markov shift with a finite
alphabet then τ is bounded and bounded away from zero (since Σ is com-
pact). In particular

∫
Σ τ dν < ∞ for every ν ∈ Mσ. Therefore, in this case

Mσ(−τ) = Mσ and the map R is a bijection between MΦ and Mσ. We
emphasize that in the general case of countable Markov shifts the map R
need not be a bijection and this causes additional difficulties.

Given a continuous function g : Y → R we define a function∆g : Σ → R by

∆g(x) =

∫ τ(x)

0
g(x, t) dt.

Clearly, ∆g is also continuous. We have
∫

Y
g dR(ν) =

∫
Σ∆g dν∫
Σ τ dν

. (3)

When σ is a Markov shift with a finite alphabet and g : Y → R is Hölder
continuous, it was shown by Bowen and Ruelle in [6] (see also [12]) that
the topological pressure of g with respect to the semiflow Φ, denoted by
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PΦ(g), is related to the topological pressure P with respect to the shift by
the formula

P (∆g − PΦ(g)τ) = 0.

This relation relies on the fact that in this case R is a bijection and on the
variational principle for the topological pressure (together with (3)).

2.2. Thermodynamic formalism for countable Markov shifts. We
recall here some notions from the thermodynamic formalism for countable
shifts. We refer to [15, 16] for more details.

Let σ : Σ → Σ be a topologically mixing countable Markov shift. This
means that σ|Σ is a topologically mixing dynamical system when Σ is
equipped with the topology generated by the cylinder sets

Ca0···an = {x ∈ Σ : xi = ai for i = 0, . . . , n}. (4)

Given a function φ : Σ → R we define

Vn(φ) := sup{|φ(x)− φ(y)| : x, y ∈ Σ, xi = yi for i = 0, . . . , n− 1},

where x = (x0x1 · · · ) and y = (y0y1 · · · ). We say that φ is locally Hölder
if there exist constants B > 0 and θ ∈ (0, 1) such that Vn(φ) ≤ Bθn for
all n ∈ N. Note that since nothing is required for n = 0 a locally Hölder
function is not necessarily bounded.

We now introduce the notion of (topological) pressure for a countable
Markov shift. Fix a symbol i0 in the alphabet S and let φ : Σ → R be a
locally Hölder function. The so-called Gurevich pressure of φ was introduced
by Sarig in [15] as

Pσ(φ) = lim
n→∞

1

n
log

∑

x:σnx=x

exp

(
n−1∑

i=0

φ(σix)

)
χCi0

(x),

where χCi0
(x) is the characteristic function of the cylinder Ci0 ⊂ Σ (see (4)).

Since σ is topologically mixing one can show that Pσ(φ) does not depend
on i0. Furthermore, the following properties hold:

1. (approximation property) if

K := {K ⊂ Σ : K )= ∅ compact and σ-invariant},

then

Pσ(φ) = sup{Pσ|K(φ) : K ∈ K}, (5)

where Pσ|K(φ) is the classical topological pressure on K;
2. (variational principle) if supΣ φ < ∞ then

Pσ(φ) = sup

{
hµ(σ) +

∫

Σ
φ dµ : µ ∈ Mσ(φ)

}
. (6)

There is a certain class of countable Markov shifts for which the ther-
modynamic formalism is particularly similar to the one for Markov shifts
with a finite alphabet. We say that Σ satisfies the big images and preimages
property (BIP property) if there exist b1, b2, . . . , bn ∈ S such that for every

a ∈ S there exist i, j ∈ S with tbiatabj = 1.
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Here tij are the entries of the transition matrix of Σ. We say that µ ∈ Mσ is
a Gibbs measure for the function φ : Σ → R if for some constants P , C > 0
and every n ∈ N and x ∈ Ca0···an we have

1

C
≤ µ(Ca0···an)

exp(−nP +
∑n

i=0 φ(σ
kx))

≤ C.

It was proved by Sarig in [16] that a locally Hölder function φ with finite
Gurevich pressure has an invariant Gibbs measure if and only if Σ satisfies
the BIP property. The “if” part also follows from work of Mauldin and
Urbański in [11] (see [16] for details). Moreover, if Σ satisfies the BIP
property then the function t *→ Pσ(tφ) is real analytic for t > 1.

2.3. The Bowen–Walters distance. Bowen’s notion of topological en-
tropy on an arbitrary subset of a compact invariant set requires a distance
on the ambient space. In the case of suspension flows one uses the distance
introduced by Bowen and Walters in [7], that we briefly recall in this section.
Bowen’s notion of topological entropy will be used in Section 5.1 (see (16)).

Let again σ : Σ → Σ be a countable Markov shift. Given θ ∈ (0, 1), we
define a distance on Σ by

dΣ(x, y) = θsup{n∈N0:xn '=yn}.

When τ = 1 on Σ, we introduce the so-called Bowen–Walters distance d1
on Y in the following manner. Given x, y ∈ Σ and t ∈ [0, 1] we define the
length of the horizontal segment [(x, t), (y, t)] by

ρh((x, t), (y, t)) = (1− t)dΣ(x, y) + tdΣ(σx,σy).

Note that

ρh((x, 0), (y, 0)) = dΣ(x, y) and ρh((x, 1), (y, 1)) = dΣ(σx,σy).

Furthermore, given (x, t), (y, s) ∈ Y on the same orbit we define the length
of the vertical segment [(x, t), (y, s)] by

ρv((x, t), (y, s)) = inf{|r| : ϕr(x, t) = (y, s) and r ∈ R}.
Finally, given arbitrary points (x, t), (y, s) ∈ Y the distance d1((x, t), (y, s))
is defined as the infimum of the lengths of paths between (x, t) and (y, s)
composed of a finite number of horizontal and vertical segments.

For an arbitrary height function τ , the Bowen–Walters distance dY on Y
between the points (x, t), (y, s) ∈ Y is defined by

dY ((x, t), (y, s)) = d1((x, t/τ(x)), (y, s/τ(s))).

3. Topological pressure for suspension semiflows

3.1. Notion of topological pressure. We now start developing a thermo-
dynamic formalism for suspension semiflows over countable Markov shifts.
Consider the suspension semiflow Φ over the countable Markov shift σ with
height function τ locally Hölder and bounded away from zero. For a con-
tinuous function g : Y → R such that ∆g is locally Hölder, we define the
topological pressure of g with respect to Φ by

PΦ(g) := inf{t ∈ R : Pσ(∆g − tτ) ≤ 0}
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(with the convention that PΦ(g) = ∞ when the infimum is taken over the
empty set). Here Pσ is the Gurevich pressure.

We also define the topological entropy of the suspension semiflow Φ by

h(Φ) := PΦ(0) = inf
{
t ∈ R : Pσ(−tτ) ≤ 0

}
. (7)

Savchenko [17] was the first to introduce the notion of entropy of a suspen-
sion flow over a countable Markov shift. More precisely, he considered the
particular case of height functions depending only on the first coordinate,
i.e., τ(x) = τ(x0), and he defined the topological entropy of Φ by

h̄(Φ) := sup{hµ(ϕ1) : µ ∈ MΦ}.
On the other hand, he did not assume τ to be bounded away from zero.
The difficulty that arises from this is that the map R defined by (2) may
not be a bijection (it may not be surjective, in which case certain measures
in MΦ are of the form ν ×m, where ν is an infinite σ-invariant measure on
Σ and m is the Lebesgue measure). Savchenko proved in [17, Theorem 2]
that h̄(Φ) = inf{t : Pσ(−tτ) ≤ 0}. Therefore, when τ depends only on the
first coordinate and is bounded away from zero, we have h(Φ) = h̄(Φ), i.e.,
the two notions coincide.

Example 1. Even when the Gurevich entropy of the Markov shift in the
base is infinite the entropy of the suspension semiflow may be finite. For
example, let σ : Σ → Σ be the full shift on the countable alphabet S = N, and
let τ : Σ → R+ be the height function defined by

τ(x) = log(x0(x0 + 1)), where x = (x0x1 · · · ). (8)

In this case h(σ) = ∞. Since we are considering the full shift, a point x ∈ Ci0
satisfies σnx = x if and only if it is obtained by repeating a finite sequence
i0j1 · · · jn−1, with j1, . . . , jn−1 ∈ N. Therefore, for a function φ(x) = φ(x0)
we have

P (−t log φ) = lim
n→∞

1

n
log

∑

σnx=x

n−1∏

i=0

(φ(σix))−tχCi0
(x)

= lim
n→∞

1

n
log

∑

j1,j2,...,jn−1∈N
λ−t
i0
(λj1 . . .λjn−1)

−t

= lim
n→∞

−1

n
log λ−t

i0
+ lim

n→∞

1

n
log

( ∞∑

i=1

(λ−t
i )

)n−1

= log
∞∑

i=1

λ−t
i .

(9)

In particular, for the function τ in (8) we obtain

P (−tτ) = log
∞∑

n=1

(
1

n(n+ 1)

)t

.

Hence, h(Φ) = 1 = inf{t : Pσ(−tτ) ≤ 0}.

Example 2. The equation P (∆g − tτ) = 0 may have no root. Let again
σ : Σ → Σ be the full shift on a countable alphabet. Let α(n) = 2n(log 2n)2
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and take N > 0 such that
∑

n>N α(n)−1 < 1. We consider the height
function τ : Σ → R+ defined by

τ(x) = logα(x0 +N), where x = (x0x1 · · · ).

Then

Pσ(−tτ) =

{
∞ if t < 1,

negative if t ≥ 1.

For t ≥ 1 this follows from (9) and the choice of N . Hence, the topological
entropy of the associated suspension semiflow Φ is

h(Φ) = 1 = inf{t : Pσ(−tτ) ≤ 0},

and Pσ(−h(Φ)τ) < 0.

3.2. Basic properties of the pressure. In the next statement the pres-
sure is described as the supremum over the compact invariant sets.

Theorem 1 (Approximation property). Let Φ be a suspension semiflow
on Y over a countable Markov shift. If g : Y → R is a continuous function
such that ∆g is locally Hölder and bounded above, then

PΦ(g) = sup
{
PΦ|K(g) : K ⊂ Y compact and Φ-invariant

}
.

Proof. By the classical theory, for any compact sets K1 ⊂ K2 ⊂ Y we have

PΦ|K1
(g) ≤ PΦ|K2

(g).

It follows from (5) that

PΦ(g) = inf
{
t ∈ R : sup

K∈K
Pσ|K(∆g − tτ) ≤ 0

}

≥ inf
{
t ∈ R : Pσ|K(∆g − tτ) ≤ 0

}
= PΦ|K(g)

(10)

for each compact set K ⊂ Σ. On the other hand, by (5), the topological
pressure of the Markov shift satisfies

Pσ(∆g−tτ) = sup{Pσ|K(∆g−tτ) : K ⊂ Σ compact and σ-invariant}. (11)

Let YK ⊂ Y be the compact and Φ-invariant set having for base the compact
and σ-invariant set K ⊂ Σ. Let also PΦ|YK

(g) be the unique real number
satisfying

Pσ|K(∆g − PΦ|YK
(g)τ) = 0 (12)

(compactness ensures that such a number exists). Note that PΦ|YK
(g) is

indeed the topological pressure of g on YK .
Setting

A := sup{PΦ|YK
(g) : K ⊂ Y compact and Φ-invariant},

it follows from (10) that A ≤ PΦ(g). We claim that equality holds. Assume
on the contrary that A < PΦ(g) and let s ∈ (A,PΦ(g)) (we can assume that
A is finite, since otherwise the result is immediate). Since τ is positive, the
function t *→ Pσ|K(∆g − tτ) is decreasing. Since s > A, it follows from (11)
and (12) that Pσ|K(∆g − sτ) ≤ 0 for every compact σ-invariant set K ⊂ Σ,
and hence Pσ(∆g − sτ) ≤ 0. On the other hand, since s < PΦ(g) we have
Pσ(∆g − sτ) > 0. This contradiction proves the result. !
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By Theorem 1 the topological pressure PΦ is a convex function of g, since
it is the supremum of convex functions.

We now establish a variational principle for suspension semiflows over
countable Markov shifts.

Theorem 2 (Variational principle). Let Φ be a suspension semiflow on Y
over a countable Markov shift. If g : Y → R is a continuous function such
that ∆g is locally Hölder and bounded above, then

PΦ(g) = sup

{
hµ(Φ) +

∫

Y
g dµ : µ ∈ MΦ and −

∫

Y
g dµ < ∞

}
. (13)

Proof. Set N = Mσ(−τ) ∩Mσ(∆g). By the variational principle for count-
able Markov shifts (see (6)), for each t > PΦ(g) we have

0 ≥ Pσ(∆g − tτ)

≥ sup

{
hν(σ) +

∫

Σ
∆g dν − t

∫

Σ
τ dν : ν ∈ N

}
,

since N ⊂ Mσ(∆g − tτ). Therefore,

0 ≥ sup

{∫

Σ
τ dν

(
hν(σ)∫
Σ τ dν

+

∫
Σ∆g dν∫
Σ τ dν

− t

)
: ν ∈ N

}
. (14)

For every ν ∈ N we have
∫

Y
g d(ν ×m) < ∞ if and only if

∫

Σ
∆g dν < ∞.

Since τ > 0, by (3) and Abramov’s formula, it follows from (14) that

0 ≥ sup

{
hµ(Φ) +

∫

Y
g dµ− t : µ ∈ MΦ and −

∫

Y
g dµ < ∞

}
.

That is, P ≤ t where P is the supremum in (13). Hence, P ≤ PΦ(g).
For the reverse inequality, let K ⊂ Y be a compact Φ-invariant set. Then

sup

{
hµ(Φ|K) +

∫

K
g dµ : µ ∈ MΦ|K

}
≤ P.

By Theorem 1 we obtain PΦ(g) ≤ P and the proof is complete. !
Setting g = 0 in Theorems 1 and 2 we obtain the following.

Theorem 3. Let Φ be a suspension semiflow on Y over a countable Markov
shift. Then

h(Φ) = sup {h(Φ|K) : K ⊂ Y compact and Φ-invariant}
= sup {hµ(Φ) : µ ∈ MΦ} .

Let now g : Y → R be a continuous function such that ∆g is locally
Hölder. A measure µ ∈ MΦ is called an equilibrium measure for g if

PΦ(g) = hµ(Φ) +

∫

Y
g dµ.

We will use the notation ug = ∆g − PΦ(g)τ .

Theorem 4. Let Φ be a suspension semiflow on Y over a countable Markov
shift, and let g : Y → R be a continuous function such that ∆g is locally
Hölder and bounded above. Then the following properties are equivalent:
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1. there is an equilibrium measure µg ∈ MΦ for g;
2. Pσ(ug) = 0 and there is an equilibrium measure νg ∈ Mσ(−τ) for ug.

Proof. By the definition of topological pressure Pσ(ug) ≤ 0. We assume first
that Pσ(ug) < 0. By (6), given ν ∈ Mσ(−τ) we have

hν(σ) +

∫

Σ
∆g dν − PΦ(g)

∫

Σ
τ dν < 0

Since Mσ(−τ) can be identified with MΦ, using Abramov’s formula we ob-
tain that for every µ ∈ MΦ,

hµ(Φ) +

∫

Y
g dµ < PΦ(g),

and there are no equilibrium measures in this case.
Assume now that Pσ(ug) = 0, and let νg ∈ Mσ(−τ) be an equilibrium

measure for ug. Then

Pσ(ug) = hνg(σ) +

∫

Σ
ug dνg = 0.

Set µg = R(νg). Since νg ∈ Mσ(−τ) we have
∫
Σ τ dνg < ∞, and thus

PΦ(g) =
hνg(σ)∫
Σ τ dνg

+

∫
Σ∆g dνg∫
Σ τ dνg

= hµg(Φ) +

∫

Y
g dµg.

This shows that µg is an equilibrium measure for g. On the other hand, if
we start with an equilibrium measure µg for g, then

PΦ(g) = hµg(Φ) +

∫

Y
g dµg.

The measure µg is obtained from a product measure νg ×m for some νg ∈
Mσ(−τ). Therefore, using Abramov’s formula,

0 = Pσ(ug) ≥ hνg(σ) +

∫

Σ
ug dνg = 0.

In particular, νg is an equilibrium measure for ug. This completes the proof.
!

An equilibrium measure for the zero function g ≡ 0 is called a measure of
maximal entropy. Theorem 4 implies that the following are equivalent:

1. there is a measure of maximal entropy in MΦ;
2. Pσ(−h(Φ)τ) = 0 and −h(Φ)τ has an equilibrium measure in Mσ(−τ).

4. Examples

4.1. Bounded height function. When the height function is bounded, the
properties of the pressure on the base (for the Markov shift) can be trans-
lated to the pressure for the flow. We note that when the height function τ is
bounded, the map R : Mσ → MΦ in (2) is a bijection (since Mσ(−τ) = Mσ).

Proposition 5. If the height function is bounded, then either the equation
Pσ(∆g − tτ) = 0 has a root or Pσ(∆g − tτ) = ∞ for every t ∈ R.
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Proof. If Pσ(∆g) = ∞ then PΦ(g) = ∞. Assume now that Pσ(∆g) < ∞.
Taking numbers s, S > 0 such that s ≤ τ ≤ S, we obtain

−tS + Pσ(∆g) ≤ Pσ(∆g − tτ) ≤ −ts+ Pσ(∆g).

Also, there exist numbers ts, tS ∈ R such that

0 ≤ −tss+ Pσ(∆g) < ∞ and −∞ < −tSS + Pσ(∆g) ≤ 0.

The result follows from the continuity of the pressure. !
Proposition 6 (BIP shift). Assume that σ satisfies the BIP property, and
let g : Y → R be a continuous function such that ∆g is locally Hölder. If
the height function is bounded, then the function t *→ PΦ(tg), when finite, is
real analytic.

Proof. Recall that when σ satisfies the BIP property and ∆g is locally
Hölder, the function t *→ Pσ(∆g − tτ), when finite, is real analytic. The
result now follows from the implicit function theorem: Pσ(∆g−PΦ(g)τ) = 0,
and in order to verify the nondegeneracy condition note that

∂

∂t
Pσ(∆g − tτ)

∣∣∣
t=s

= −
∫

Σ
τ dµ < 0,

where µ denotes the equilibrium measure of ∆g − sτ . !

4.2. Bounded potentials and BIP shifts. We now assume that:

1. σ satisfies the BIP property;
2. g : Y → R is bounded and ∆g is locally Hölder;
3. there exists tc > 0 such Pσ(−tτ) < ∞ for every t > tc,

lim
t→t+c

Pσ(−tτ) = ∞ and lim
t→∞

Pσ(−tτ) = −∞. (15)

Proposition 7. The equation Pσ(∆g − tτ) = 0 has a root.

Proof. If s ≤ g ≤ S for some numbers s, S ∈ R, then sτ ≤ ∆g ≤ Sτ , and

Pσ((s− t)τ) ≤ Pσ(∆g − tτ) ≤ Pσ((S − t)τ).

Under the above assumptions there exist ts, tS ∈ R such that

0 ≤ Pσ((s− ts)τ) ≤ Pσ(∆g − tsτ)

and
Pσ(∆g − tSτ) ≤ Pσ((S − tS)τ) ≤ 0.

Again, the continuity of the pressure ensures the existence of a root. !
The next lemma shows that under the above assumptions the thermody-

namic formalism is identical to the one for suspension flows over compact
subshifts of finite type.

Proposition 8. If g : Y → R is bounded and ∆g is locally Hölder, then the
function t *→ PΦ(tg) is real analytic.

Proof. It follows from the proof of Proposition 7 that PΦ(tg) is finite for
every t ∈ R. As in the proof of Proposition 6, the implicit function theorem
yields the desired result. !
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4.3. Extension of potentials defined on the base. Let φ : Σ → R be
locally Hölder. It is shown in [1] that there exists a continuous function
g : Y → R such that ∆g = φ. This provides a tool to construct examples.

Namely, let f : Σ → R be a locally Hölder function, bounded above, and
with Pσ(f) = 0. Let ε > 0 and consider

Σ+ = {x ∈ Σ : f(x) > −ε} and Σ− = {x ∈ Σ : f(x) ≤ −ε}.

We define τ , φ : Σ → R by

τ(x) =

{
−f(x), x ∈ Σ−

ε, x ∈ Σ+ and φ(x) =

{
f(x) + ε, x ∈ Σ−

0, x ∈ Σ+ .

Note that τ ≥ ε and φ− τ = f . Then

Pσ(∆g − τ) = Pσ(φ− τ) = Pσ(f) = 0

Therefore, PΦ(g) = 1 and the recurrence properties of f can be transferred
into recurrence properties of g. More precisely, using the language of [15, 16]:

1. if f is positive recurrent and the corresponding conformal measure
belongs to Mσ(−τ), then g has a conservative conformal measure and
there exists an equivalent invariant probability measure;

2. if f is positive recurrent and the corresponding conformal measure
does not belong to Mσ(−τ), then g has a conservative conformal
measure and there exists an equivalent invariant infinite measure (the
same holds if f is null recurrent);

3. if f is transient, then g has no conservative conformal measure.

5. Multifractal analysis

In this section we study the multifractal analysis of suspension semiflows
over countable Markov shifts. More precisely, we study the entropy spectra
of Birkhoff averages. The case of suspension flows over finite Markov shifts
was studied by Barreira and Saussol in [2, 3] (see also [13]).

5.1. Entropy of arbitrary sets. In the theory of multifractal analysis
there are several ways to measure the “size” of a set. Here we consider the
topological entropy. We note that the level sets Jα ⊂ Y of a multifractal
decomposition (see (18) in Section 5.2) are not obtained from a Markov shift
Σ′ ⊂ Σ as in (1), i.e., we cannot replace the pair (Y,Σ) by (Jα,Σ′) in (1)
(unless Jα is the whole space). This means that we need an appropriate
notion of topological entropy in arbitrary subsets for suspension semiflows
over countable Markov shifts. To the best of our knowledge, no such notion
exists in the literature.

Let Z ⊂ Y be an arbitrary set (not necessarily compact nor invariant).
We define the topological entropy of Φ on Z by

h∗(Φ|Z) := sup{hB(Φ|Z ∩K) : K ⊂ Y compact and Φ-invariant}, (16)

where hB(Φ|Z ∩ K) is Bowen’s notion of topological entropy on an arbi-
trary subset of a compact invariant set (with respect to the Bowen–Walters
distance on Y ; see Section 2.3).
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We show that h∗(Φ|Z) is an extension both of Bowen’s notion of topo-
logical entropy (on noncompact sets) and of our notion in (7) (and thus we
have the right to continue calling it topological entropy).

Proposition 9. The following properties hold:

1. for any set Z ⊂ K ′ ⊂ Y , where K ′ is compact and Φ-invariant, we
have h∗(Φ|Z) = hB(Φ|Z);

2. if Z ⊂ Y is obtained from a Markov shift Σ′ ⊂ Σ as in (1), i.e.,

Z = {(x, t) ∈ Σ′ × R : 0 ≤ t ≤ τ(x)}, (17)

then h∗(Φ|Z) = h(Φ|Z).

Proof. For the first property, note that since Z = Z ∩ K ′, it follows from
the definitions that

h∗(Φ|Z) = h∗(Φ|Z ∩K ′) = hB(Φ|Z ∩K ′) = hB(Φ|Z).

For the second property, note that by (7) and Theorem 3,

h(Φ|Z) : = inf{t ∈ R : Pσ|Σ′(−tτ) ≤ 0}
= sup{h(Φ|K) : K ⊂ Z compact and Φ-invariant}.

Since
h(Φ|K) = h(Φ|Z ∩K) = hB(Φ|Z ∩K),

we obtain h(Φ|Z) ≤ h∗(Φ|Z). On the other hand, by Theorem 3 and (17),

hB(Φ|Z ∩K) = h(Φ|Z ∩K)

= sup{hµ(Φ) : µ ∈ MΦ with µ(Z ∩K) = 1}
≤ sup{hµ(Φ) : µ ∈ MΦ with µ(Z) = 1} = h(Φ|Z),

and hence h∗(Φ|Z) ≤ h(Φ|Z). Therefore, h∗(Φ|Z) = h(Φ|Z). !
In view of Proposition 9 we will denote from now on both topological

entropies h∗(Φ|Z) and hB(Φ|Z) by h(Φ|Z).

5.2. Entropy spectra and multifractal analysis. We always assume in
this section that the countable Markov shift in the base is topologically mix-
ing and satisfies the BIP property. Recall that in this setting the pressure,
when finite, is real analytic (see Section 2.2). We also assume that there
exists tc > 0 such that Pσ(−tτ) < ∞ for every t > tc, and that (15) holds.

We consider the multifractal decompositions induced by Birkhoff aver-
ages. Let g : Y → R be a continuous function such that ∆g is locally Hölder.
Given α ∈ R, we consider the level set

Jα :=

{
x ∈ Y : lim

t→∞

1

t

∫ t

0
g(ϕrx) dr = α

}
,

where (ϕt)t≥0 is the suspension semiflow. We also consider the irregular set

J ′ :=

{
x ∈ Y : lim

t→∞

1

t

∫ t

0
g(ϕrx) dr does not exist

}
.

The multifractal decomposition is given by the disjoint union

Y =

(
⋃

α∈R
Jα

)
∪ J ′. (18)
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Note that by Birkhoff’s ergodic theorem, µ(J ′) = 0 for every µ ∈ MΦ.
The entropy spectrum of the Birkhoff averages of g is defined by

E(α) = h(Φ|Jα).
We say that two functions g, h : Y → R are cohomologous if there exists a
locally bounded measurable function ρ : Y → R such that

g(x)− h(x) = lim
t→0+

ρ(ϕtx)− ρ(x)

t
for every x ∈ Y.

The following is our main result on the entropy spectrum.

Theorem 10. Let g : Y → R be a continuous function noncohomologous to a
constant and with PΦ(g) = 0, such that ∆g is locally Hölder and nonpositive.
Then either:

1. E is real analytic, strictly concave, and its domain is a closed bounded
interval;

2. E is real analytic, strictly concave, and its domain is unbounded;
3. E has unbounded domain, and there exists β ∈ R such that for t ≥ β

the spectrum is strictly concave and for t < β the spectrum is constant
equal to h(Φ).

In all cases the irregular set J ′ has full entropy, i.e, h(Φ|J ′) = h(Φ).

Proof. It was proved by Barreira and Saussol in [2] (building on work of
Barreira and Schmeling [4]) that if Φ is a suspension flow over a compact
subshift of finite type and ∆g is Hölder continuous, then the irregular set
of a function g not cohomologous to a constant has full topological entropy.
On the other hand, the cohomology assumption implies that there is an
increasing sequence of compact Φ-invariant sets Kn with

⋃
n∈NKn = Σ such

that g|Kn is not cohomologous to a constant (up to a bounded measurable
function). Theorem 1 implies that

h(Φ) = sup
{
h(Φ|K) : K compact and Φ-invariant

}

≥ sup
{
h(Φ|J ′ ∩K) : K compact and Φ-invariant

}
= h(Φ|J ′)

≥ sup
{
h(Φ|J ′ ∩K) : K compact and σ|K is Markov

}
= h(Φ),

where the second equality is due to our definition of entropy, and where the
last one follows from the cited work in [2]. This shows that the irregular set
has full topological entropy.

We now set T (q) = PΦ(qg) for each q ∈ R. Under our assumptions the
function T (q) can either be:

1. finite and analytic for q ∈ R;
2. finite for q ≥ 0 and infinite for q < 0, and either

− lim
q→0+

d

dq
P (qg) = ∞ or − lim

q→0+

d

dq
P (qg) < ∞.

We first assume that T is finite and analytic. In this case the approach of
Barreira and Saussol in [2] can be used without change to show that E is
real analytic and strictly concave. Furthermore, arguments of Schmeling in
[18] show that the domain of E is a closed bounded interval.

Assume from now on that T (q) = ∞ for negative values of q. It is shown
in [2] that if Φ is a suspension flow on a compact set K and ∆g is Hölder
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continuous, then the domain of E is the range of the derivative function T ′,
which is a closed bounded interval (we note that in the identity (19) in [2]
we must add a minus sign before the integral, and thus E(−T ′(q)) must also
be replaced by E(T ′(q)) in Theorem 9 in [2]).

To show that the domain of E is unbounded we use an approximation
argument. Set TK(q) = PΦ|K(qg). Due to the approximation property in
Theorem 1, we have

T (q) = sup{TK(q) : K ⊂ Y compact and Φ-invariant}.
We recall that for each compact and Φ-invariant set K ⊂ Y , the function
TK is real analytic, and the range of T ′

K is a bounded interval.
Note that TK(0) ≤ T (0) = h(Φ) < ∞ (our assumptions on the height

function ensure that h(Φ) < ∞). Take a < 0. Since T (−1) = ∞ there exists
a compact and Φ-invariant set K ⊂ Y such that |TK(−1) − h(Φ)| > −a.
Since TK is real analytic we can apply the mean value theorem, and there
exists p ∈ [−1, 0] such that

TK(0)− TK(−1) = T ′
K(p).

Therefore the range of T ′
K is a bounded interval [s, S] (depending on K)

with s < a. The fact that the domain of E is unbounded follows from the
inclusion of each interval [s, S] in the domain.

Set now

β = lim
q→0+

d

dq
P (qg). (19)

When β = −∞, the range of T ′ is unbounded. It follows from work by
Barreira and Saussol in [2] that

E(T ′(q)) = T (q)− qT ′(q), (20)

and the result follows immediately from this relation. When β is finite
we have E(β) = T (0), which is an upper bound for E . Since the domain is
unbounded and the function E is concave, the spectrum satisfies E(t) = h(Φ)
for t < β. !

Recall that for suspension flows over finite Markov shifts the entropy
spectrum is analytic and has bounded domain. This strongly contrasts with
what happens here. In particular, the domain of the spectrum may be
unbounded (see statements 2 and 3 of Theorem 10), and the spectrum may
have points where it is not analytic (see statement 3). Recall that our
assumptions on the height function ensure that h(Φ) < ∞. Similar results
can be obtained if we allow the flow to have infinite entropy (in which case
the spectrum has unbounded image).

5.3. Bounded versus unbounded domain. To give an example corre-
sponding to statement 1 in Theorem 10 it suffices to consider a bounded
potential g : Y → R. As noted in Proposition 8, the function T is then ana-
lytic in R. Therefore the classical theory applies, and the entropy spectrum
is real analytic, strictly concave, and has bounded domain.

We now turn to the case of unbounded domain. We first describe the
basic idea to construct examples of this type. We write g = log f , and we
assume that 0 < f < 1. The heuristic argument is as follows:
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1. in order that ∣∣∣∣ limt→∞

1

t

∫ t

0
log f(ϕrx) dr

∣∣∣∣

is arbitrarily large for certain points x, we want f to be sufficiently
close to zero; this means that for q < 0 the potential q log f should
be sufficiently “large”;

2. the notion of “large” is related to τ : we need that q log f is “larger”
than τ , in the sense that P (q log f) = ∞ for q < 0; this means that

inf{t ∈ R : Pσ(∆q log f − tτ) ≤ 0} = ∞;

3. in conclusion, if ∆− log f is much “larger” than τ , then the spectrum
has unbounded domain.

Example 3. Let σ be the full shift defined on N, and consider the height
function τ(x) := log(x0(x0 + 1)). We know from Example 1 that h(Φ) = 1.
Consider now the locally constant potential defined by φ(x) = −x0 log x0,
and let g : Y → R be a continuous function such that ∆g = φ. It follows
from (9) that for q < 0,

PΦ(qg) = inf{t ∈ R : Pσ(q∆g − tτ) ≤ 0}
≤ inf{t ∈ R : Pσ(qφ− tτ) ≤ 0}

= inf

{
t ∈ R : log

∞∑

n=1

nqn

(n(n+ 1))t
≤ 0

}
= ∞.

Hence, the entropy spectrum has unbounded domain.

5.4. Examples for statements 2 and 3 in Theorem 10. We assume
here that the entropy spectrum has unbounded domain. Given a function
g : Y → R, we are assuming that PΦ(qg) = ∞ for every q < 0. Note that,
since the entropy is finite, we have PΦ(0) < ∞. In statements 2 and 3 of
Theorem 10 the shape of the spectrum depends on β in (19).

Lemma 1. The function T is analytic in (0, 1).

Proof. Let q ∈ (0, 1). Since ∆g ≤ 0 we have that ∆g ≤ q∆g. Therefore

Pσ(∆g − tτ) ≤ Pσ(q∆g − tτ) ≤ Pσ(−tτ).

Thus, there exist ts, tS ∈ R such that

Pσ(q∆g − tsτ) ≤ 0 and 0 ≤ Pσ(q∆g − tSτ) < ∞.

The continuity of the pressure ensures the existence of a root of the equation
Pσ(q∆g−tτ) = 0 for every q ∈ (0, 1). Since the shift σ has the BIP property,
the analyticity of T follows from the implicit function theorem. !

The derivative of the pressure is given by

d

dq
Pσ(qg)|q=p =

∫

Y
g dµp =

∫
Σ∆g dνp∫
Σ τ dνp

, (21)

where µp is the equilibrium measure for pg, and νp is the equilibrium measure
for p∆g − PΦ(pg)τ . Denote by µ0 the measure of maximal entropy for the
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flow (note that it exists since Σ is the full shift and P (−h(Φ)τ) = 0), and
by ν0 the equilibrium (Gibbs) measure for −h(Φ)τ (see [16]). We have

T ′(0) =

∫
Σ∆g dν0∫
Σ τ dν0

Since τ is bounded away from zero, it follows from the variational principle
that

0 <

∫

Σ
τ dν0 =

hν0(σ)

h(Φ)
< ∞

The problem, depending on whether β is finite or not, is thus reduced to the
integrability of∆g with respect to ν0, and we can obtain general assumptions
for each situation in statements 2 and 3 of Theorem 10.

Proposition 11. Let ν0 the equilibrium measure for −h(Φ)τ .

1. If ∆g /∈ L1
ν0 then the spectrum is analytic and strictly concave.

2. If ∆g ∈ L1
ν0 then the spectrum is analytic and strictly concave up to

some critical point after which the spectrum is constant.

This criterion can be used to construct examples.

Example 4 (−T ′(0) = ∞). With the same setting as in Example 3, we
consider the locally constant function defined by φ(x) = −(x0)2 log x0. Let
g : Y → R be a continuous function such that ∆g = φ. Since ν0 is a Gibbs
measure we have

−
∫

Σ
∆g dν0 = −

∞∑

n=1

∫

Cn

∆g dν0 =
∞∑

n=1

−∆g|Cnν0(Cn)

≥ K
∞∑

n=1

n2 log n

n(n+ 1)
= ∞

for some constant K > 0. In this case the spectrum has unbounded domain,
is analytic, and is strictly concave.

Example 5 (−T ′(0) < ∞). Let σ be the full shift on N, and τ(x) := x0 log 2.
Using (9) we obtain

Pσ(−τ) = log
∞∑

n=1

2−n = 0.

Hence, h(Φ) = 1. Define φ(x) = log(x0(x0 + 1)) and let g : Y → R be a
continuous function such that ∆g = φ. Since ν0 is a Gibbs measure we have

−
∫

Σ
∆g dν0 =

∞∑

n=1

−∆g|Cnν0(Cn) ≤ K
∞∑

n=1

log(n(n+ 1))

2n
< ∞

for some constant K > 0. In this case the spectrum has unbounded domain,
and there exists β ∈ R such that

E(α) =
{
strictly concave if α > β

1 if α ≤ β
.
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5.5. Existence of full measures. A Φ-invariant probability measure µα is
called a full measure for the level set Jα if hµα(Φ) = h(Φ|Jα). The existence
of full measures is closely related to the existence of equilibrium measures
for −T (q) + qg, for an appropriate range of values of the parameter q.

The problem can be reduced to a corresponding problem for the Markov
shift. By Theorem 4, since PΦ(−T (q) + qg) = 0, there is an equilibrium
measure for −T (q) + qg if and only if

Pσ(∆−T (q)+qg) = 0

and there is an equilibrium measure for ∆−T (q)+qg. The advantage of the
reduction is that since the Markov shift σ satisfies the BIP property, the
potential q∆g − T (q)τ = ∆−T (q)+qg has a unique Gibbs measure νq. In the
case of finite Markov shifts, a full measure is obtained from the product of
νq and Lebesgue measure. The difficulty in the present setting is that the
Gibbs measure might not be an equilibrium measure. In fact, it can happen
that

hνq(σ) = ∞ and

∫

Σ
(q∆g − T (q)τ) dνq = −∞,

and thus the sum of the two terms is meaningless. Note that we are assuming
that h(Φ) < ∞, and thus hνq(σ) = ∞ implies that

∫
Σ τ dνq = ∞, that is,

νq /∈ Mσ(−τ) (see Example 6 below). Therefore, νq ∈ Mσ(−τ) if and only if
the measure µq obtained from the product νq×m is an equilibrium measure
for −T (q) + qg.

Theorem 12. Under the hypotheses of Theorem 10, the following holds:

1. if T (q) = ∞ for negative values of q and β is finite, then for α < β
there is no full measure for Jα;

2. if q ∈ R is such that T ′(q) = α and νq ∈ Mσ(−τ), then there is a full
measure for Jα when:
(a) T is real analytic in R and α ∈ (αmin,αmax);
(b) T (q) = ∞ for negative values of q, β = −∞, and α ∈ (−∞,αmax);
(c) T (q) = ∞ for negative values of q, β is finite and α ∈ (β,αmax).

Proof. To prove statement 1 assume on the contrary that there is a full
measure µα for Jα, where α < β. Recall that for α < β the level set has full
topological entropy, h(Jα) = h(Φ). Therefore, if

hµα(σ) = h(Φ|Jα) = h(Φ),

then µα is a measure of maximal entropy. But µβ is also a measure of
maximal entropy and there is at most one (there is at most one equilibrium
measure for −h(Φ)τ ; see [8, Theorem 1.1]).

For statement 2, let α(q) = T ′(q). Denote by µq the unique equilibrium
measure for −T (q) + qg. By (21), we have

∫

Y
g dµq = α(q) and µq(Jα(q)) = 1.
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Moreover, µq = R(νq) where νq is the unique equilibrium (Gibbs) measure
for q∆g − T (q)τ . In fact

sup

{
hν(σ) +

∫

Σ
(q∆g − T (q)τ) dν : ν ∈ Mσ

}

= hνq(σ) +

∫

Σ
(q∆g − T (q)τ) dνq = Pσ(q∆g − T (q)τ) = 0.

We obtain
hνq(σ)∫
Σ τ dνq

= T (q) + q

∫
Σ∆g dνq∫
Σ τ dνq

.

Therefore, by Abramov’s formula and (20),

hµq(Φ) = T (q) + q

∫

Y
g dµq = T (q) + qα(q) = E(α(q)).

The measure µq is the unique full measure for Jα(q). Otherwise, if µ ∈ MΦ

is such that µ )= µq, µ(Jα(q)) = 1, and

hµ(Φ) = T (q)− qα(q),

then by the variational principle and the uniqueness of the equilibrium mea-
sure we obtain

hµ(Φ) + qα(q) = T (q) = PΦ(qg)

= hµq(Φ) + q

∫

Y
g dµq > hµ(Φ) + q

∫

Y
g dµ.

Therefore α(q) >
∫
Y g dµ. On the other hand, since µ(Jα(q)) = 1 we have

that α(q) =
∫
Y g dµ. This contradiction completes the proof. !

We give an example of a suspension flow and a function g such that
Pσ(∆g − PΦ(g)τ) = 0 and there exists an equilibrium measure ν ∈ Mσ for
∆g − PΦ(g)τ but

∫
Σ τ dν = ∞. Therefore, g has no equilibrium measure.

Example 6. Consider a full shift defined on N, and the height function τ
given on cylinders by τ |Ck = k log k. Let also f : Σ → R be defined by

f |Ck := − log(k(k + 1)),

and consider a function g : Y → R such that ∆g = f − τ . We obtain

Pσ(∆g + τ) = Pσ(f − τ + τ) = 0.

Therefore, PΦ(g) = −1. Moreover, since the system satisfies the BIP prop-
erty, there exists a Gibbs measure ν corresponding to ∆g + τ . Nevertheless,

∫

Σ
τ dν =

∞∑

k=1

τ |Ckν(Ck) =
∞∑

k=1

k log k

k(k + 1)
= ∞.
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