THE LYAPUNOV SPCTRUM AS THE NEWTON METHOD.

GODOFREDO IOMMI

ABSTRACT. For a class of dynamical systems, the cookie-cutter maps, we prove
that the Lyapunov spectrum coincides with the map given by the Newton-
Raphson method applied to the derivative of the pressure function.

1. INTRODCUTION

In this note we establish a relation between the Newton-Raphson method for
finding roots of an equation and an important function in the dimension theory of
dynamical systems, namely the Lyapunov spectrum.

The dimension theory of dynamical systems has received a great deal of attention
over the last years (see [Ba, Pe]). Multifractal analysis is a sub-area of dimension
theory devoted to study the complexity of level sets determined by invariant local
quantities. Usually, the geometry of the level sets is complicated and in order to
quantify its size the Hausdorff dimension is used. In this note we will focus our
attention in one of these local quantities, namely the Lyapunov exponent. Let
T : 1 — I be a piecewise differentiable map defined on the unit interval I = [0, 1].
The Lyapunov exponent of T at the point x € I, is defined by

N() = A(z) = lim ~log|(T")' ()]

whenever the limit exists. It is a dynamical quantity that measures the exponential
rate of divergence of infinitesimally close orbits. It is possible for the Lyapunov
exponent to attain a wide range of values. In order to understand the complexity
of the induced level sets we study the Lyapunov spectrum, which is the function
defined by
L(a) :=dimg({z € I : M(z) = a}).

Here, dimpy denotes the Hausdorfl dimension of a set (see [Fa, Chapter 2| for a
precise definition). This function can be described using thermodynamical for-
malism, in particular it can be written as a function of the topological pressure
P(—tlog|T’|), see Section 3 for precise definitions and statements.

We will relate the Lyapunov spectrum with the function used to apply the
Newton-Raphson method. Given a real function f : R — R, under certain assump-
tions, the iterates of the Newton function N¢(z) converge to a root of the equation
f(z) = 0 (for precise statements see section 2.2). The study of this functions and
its dynamic behaviour has attracted a great deal of attention (see [Mi]).
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The main result in this note is that, for a certain class of dynamical systems,
the Lyapunov spectrum equals the Newton function of the topological pressure
P(—tlog|T'|)

L(~P'(~tlog [T"])) = Np(t).

2. THE LEGENDRE TRANSFORM AND THE NEWTON METHOD

Let f : R — R be a strictly decreasing convex function of class C2. In what
follows we will define its corresponding Legendre transform and the associated
Newton map. Moreover, we will show how are they related.

2.1. Legendre transform. Let ¢ € R, the line S, = a(t —t') + f(t') is called
a support line at t' if it always lie below the graph of f. There exists an interval
of the form [@min, @max] (this interval need not to be bounded) such that if « €
[@min, @max] the graph of f has a support line S, of slope equal to —a and for
such a the support line is unique. The Legendre transform of f is the function
F : [0tmin; @max] — R defined as the value of the intercept of S, with the vertical
axis. That is

(1) F(a) =inf{f(t) + at : t € R}.
It turns out that if ¢, € R is the unique point for which f(¢,) = —« then
(2) F(a) = f(ta) + atq.

Let us remark that in this simple setting the support line S, is the tangent to the
graph of f at the point (fn, f(ts)) and that the interval [min, @max] 1S uniquely
determined by the range of the derivative of f. We stress that this form of the
Legendre transform is not the most commonly used in physics (see for example [A,
p.61]).

Geometrically, the Legendre transform is the intercept of the tangent line of f
with the vertical axis.

2.2. The Newton-Raphson method. The Newton-Raphson method is an al-
gorithmic method that provides a sequences of approximations to the root of the
equation f(t) = 0. The algorithm is based on the study of the dynamics of the so
called Newton map. This map is defined by

f®)

Note that since the function f is strictly decreasing the Newton map is defined over
the real numbers (the function f has no critical values). It turns out that a point
d € R is a root of f if and only if it is a fixed point for Ny. Moreover, since
W Ny - F00
! (f'(t)?

we have that N'(d) = 0. In particular, the point d is an attractor for Ny and
iterations of the Newton map converge to the root d. That is, for any € R the
sequence {z, Ny(x), N]%(x), ..y N (z),...} converges to the root.

Geometrically, the procedure involved in this algorithm is to consider the tangent
to the graph of f at the point (¢, f(¢)) and define the Newton transformation as
the intercept of the tangent with the horizontal axis.
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2.3. A relation between the Legendre transform and the Newton method.
In virtue of the above we have that in order to compute the Legendre transform
and the Newton function of f we need to compute the tangent to f.

Lemma 2.1. Let f : R — R be a strictly decreasing convex function of class C?
and let to, € R be a point such that f'(t,) = —«. Then

(5) Ny(ta) = ~F(0).

Proof. Note that since t, € R is a point such that f'(t,) = —« then in virtue of
equation (3) the Newton map is given by

and the Legendre transform (see equation (2)) is given by
F(a) = f(ta) + ata.

The result now follows. O

3. THERMODYNAMIC FORMALISM

A large class of interesting dynamical systems have many invariant measures.
It is, therefore, an important problem to find criteria to choose relevant invariant
measures. Thermodynamic formalism is a set of ideas and techniques which derive
from statistical mechanics and that was brought into dynamics in the early seventies
by Ruelle and Sinai among others (see the books [K, Ru2, Wa] for a detailed
and nice exposition of the subject). This formalism provides procedures for the
choice of interesting measures. In this note we will consider the following class
of dynamical systems. Given a pairwise disjoint finite family of closed intervals
I,...,I, contained in [0, 1] we say that a map:

T: U I, —[0,1]
i=1
is a cookie-cutter map with n branches if the following holds:
(1) T(I;) = [0,1] for every i € {1,...,n},
(2) The map T is of class C'*€ for some € > 0,
(3) |T"(z)| > 1 for every x € [; U---U I,,.
The dynamics is concentrated in the repeller A of T, which defined by

A= Fjo T"I.

One of the most important objects in thermodynamic formalism is the so called
topological pressure of T. It is defined by

(©) P(t) = sup{hm ~t [ 1087 du s e M},

where M denotes the space of T—invariant probability measures and h(u) the
entropy of the measure p (see [Wa, Chapter 4] for the definition and properties).
For each t € R there exists a unique measure p; attaining the supremum in equation
(6), that we call equilibrium measure (see [PU, Chapter 5]). It is well known that
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the pressure function ¢ — P(t) is real analytic, strictly convex, strictly decreasing
and that P'(t) = [log|T"| du: (see [PP, Chapter 3,4] and [PU, Chapter 5]).

3.1. Newton map. A classical result by Bowen [Bo] later generalised by Ruelle
[Rul] establishes a relation between the topological pressure and the Hausdorff
dimension of the repeller.

Proposition 3.1 (Bowen’s formula). Let T be a cookie cutter map and let d =
dimyg A then d is the unique root of the equation

P(—tlog|T"|) = 0.

Let us denote by Np(t) the Newton map of the pressure function P(—tlog |T”|),
that is
P(—tlog|T'|)
P(—tlog[T])’
We have that Np(d) = d and the iterations of Np(t) converge to the unique root
of the pressure, that is

Np(t) =t —

lim Nj(t) =d.

n—oo
3.2. Lyapunov spectrum. The Lyapunov exponent of any given cookie cutter
can attain an interval of values [min, @max)- FOr & € [Omin, Qmax] consider,

J()={zel:\z)=a} and J' = {x € I : the limit \(z) does not exists} .

These level sets induce a decomposition of the repeller A of T. Indeed, A =
J"U (UgJ(@)). The function that encodes this decomposition is called Lyapunov
spectrum and it is defined by

L(a) :=dimg(J()).

H. Weiss [We], building up on previous joint work with Pesin [PW], proved that
the Lyapunov spectrum is real analytic. A rather surprising result in light of the
fact that this decomposition is fairly complicated. For instance, each level set turns
out to be dense in A (see [We]). By means of the thermodynamic formalism it is
possible to obtain formula for the Lyapunov spectrum. Indeed,

(7) L(a) = $}2D§<P(_t10g IT']) + ta).

This formula follows form the work of Weiss [We] and can be found explicitly, for
instance, in the work of Kessebohmer and Stratmann [KS] (see also [IK] for some

explicit computations). Actually, in this setting, the Lyapunov spectrum can be
written as

L(a) = é(P(—ta log |T'|) + tacx),

where t, is the unique real number such that

d
—%P(—tlog|T’|)‘ =

If we denote by u, the unique equilibrium measure corresponding to the potential
—to log |T'| we have that

/log IT'| e, = .
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Therefore,

1
(8) L(a) = E(P(_ta log |T"]) + taa),
After the substitution o = «(t), equation (8) becomes:

(9) L(a(t) = ﬁ

4. MAIN RESULT

(P(—tlog|T"]) + ta(t)) .

In virtue of the comments we have made so far, we can now establish a relation
between the Lyapunov spectrum of a cookie cutter map and the Newton map
corresponding to the pressure function.

Theorem 4.1. Let T be a cookie cutter map, then for every t € R we have
(10) L(—=P'(—tlog|T"|)) = Np(t).

Proof. The result follows noticing that the Lyapunov spectrum is given by (see
equation (9))
1

L(—P'(~tlog|T"|)) = —————— (P(~tlog [T"]|) — tP'(—tlog [T"|)) .
(=P (<4108 1)) = =iz (P(-Hog|T') ~ tP(~tlog T'))
This combined with Lemma 5 yields the desired result. O
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