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ABSTRACT. It is well known that the space of invariant probability measures
for transitive sub-shifts of finite type is a Poulsen simplex. In this article we
prove that in the non-compact setting, for a large family of transitive count-
able Markov shifts, the space of invariant sub-probability measures is a Poulsen
simplex and that its extreme points are the ergodic invariant probability mea-
sures together with the zero measure. In particular we obtain that the space
of invariant probability measures is a Poulsen simplex minus a vertex and
the corresponding convex combinations. Our results apply to finite entropy
non-locally compact transitive countable Markov shifts and to every locally
compact transitive countable Markov shift. In order to prove these results
we introduce a topology on the space of measures that generalizes the vague
topology to a class of non-locally compact spaces, the topology of convergence
on cylinders. We also prove analogous results for suspension flows defined over
countable Markov shifts.

1. INTRODUCTION

Ever since the work of Parthasarathy [Parl] and Oxtoby [O] in the early 1960s
a great deal of attention has been paid to the problem of describing the space of
invariant probability measures of a dynamical system. Remarkable results have
been obtained relating the geometry of the space with the dynamical properties of
the system. A result by Downarowicz [D] states that for every Choquet simplex
K there exists a minimal sub-shift (X,T') for which the space of invariant proba-
bility measures M(X,T) is affinely homemorphic to K. In this article we will be
interested in a very special Choquet Simplex.

Definition 1.1. A metrizable convex compact Choquet simplex with at least two
points K is a Poulsen Simplex if its extreme points are dense in K.

The first example of such a simplex was constructed by Poulsen [Pou] in 1961.
It was later shown by Lindenstrauss, Olsen and Sternfeld [LOS, Theorem 2.3] that
the Poulsen simplex is unique up to affine homemorphism. This simplex enjoys
remarkable properties. For example, as proved in [LOS, Section 3|, the set of
extreme points in the Poulsen simplex is path connected. The relation of this
simplex with dynamical systems directly follows from the seminal work of Sigmund
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[Si1], see also [Si2, Si3]. Indeed, if (¥, 0) is a transitive sub-shift of finite type then
M(X,0) is affinely homeomorphic to the Poulsen simplex. Note that the extreme
points in this setting correspond to the ergodic measures.

This article describes the space of invariant measures for transitive countable
Markov shifts. The major difference with previous work on the subject is that the
phase space is no longer compact and therefore the escape of mass phenomenon
has to be taken into account. Notions of convergence in the space of measures are
required to describe loss of mass. Indeed, the weak* topology preserves the total
mass of the space, thus it can not capture the escape of mass. For locally compact
spaces the space of invariant measures can be endowed with the vague topology;
in this context it is possible for mass to be lost. We introduce a new notion of
convergence in the space of measures, the so called topology of convergence on
cylinders, that generalizes the vague topology. This notion of convergence does not
require the underlying space to be locally compact.

In the non-compact setting the space of invariant probability measures is not
necessarily compact. The lack of compactness of the space of invariant probabil-
ity measures is a major difficulty in the development of the corresponding ergodic
theory: in many arguments it is natural to take limits of invariant measures and it
is important to know that the limiting object is indeed a measure. We stress that
this is a very subtle phenomenon, it could happen that for topologies that natu-
rally generalize the weak* topology the limit of a sequence of invariant probability
measures is not a countably additive measure. In this paper we will compactify
the space of invariant probability measures for a large family of countable Markov
shifts, including a wide range of non-locally compact shifts. As we will see, our
compactification is strongly related to the escape of mass phenomenon.

For completeness we will briefly describe the topology on the space of invariant
sub-probability measures we will focus on in this work. Let (X,0) be a transitive
countable Markov shift and M<;(X,0) the space of o-invariant sub-probability
measures on Y (for precise definitions we refer the reader to Sections 2 and 3). We
say that (un)n € M<i1(2,0) converges on cylinders to p if

nlglc}o 1n(C) = p(C),

for every cylinder C' < X. This notion of convergence induces a topology, the
topology of convergence on cylinders. We prove that this topology is metrizable
(see Proposition 3.15). For general facts about the topology of convergence on
cylinders we refer the reader to Section 3.3.

We consider a large class of countable Markov shifts that satisfy the so called
F—property (see Definition 4.9). This include locally compact and finite entropy
non-locally compact countable Markov shifts. The F—property essentially rules
out the possibility of having infinitely many periodic orbits of a given length that
intersect a fixed cylinder. One of the main results of this work is

Theorem 1.2. Let (X,0) be a transitive countable Markov shift satisfying the
F—property. Then the space of invariant sub-probability measures M<1(3,0) en-
dowed with the topology of convergence on cylinders is affine homeomorphic to the
Poulsen simplex. In particular M« (2, 0) is compact with respect to the topology
of convergence on cylinders.

The topology of convergence on cylinders restricted to M(X, o) coincides with
the weak™ topology (see Lemma 3.17). Theorem 1.2 has the following corollary.
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Corollary 1.3. Let (X,0) be a transitive countable Markov shift satisfying the
F—property. Then the space of invariant probability measures M(X,0) endowed
with the weak* topology is affine homeomorphic to the Poulsen simpler minus a
vertex and all of its convex combinations.

In order to prove Theorem 1.2 we will need to prove three key properties: (1)
there exists a sequence of ergodic measures converging on cylinders to the zero
measure, (2) every sequence of periodic measures has an accumulation point (in
the topology of convergence on cylinders) which is a countably additive measure
and (3) the set of periodic measures is weak™ dense in M(%, o). While point (3)
is fairly standard and uses shadowing and closing properties of the shift, the other
two are more subtle. Indeed, a combinatorial assumption is required on (X, o) for
these properties to hold (hence the F-property assumption).

It worth pointing out that Theorem 1.2 is optimal for the topology of conver-
gence on cylinders. More precisely, if (X, 0) does not satisfy the F—property, then
M(X, o) contains a sequence of periodic measures which converges on cylinders to
a finitely additive measure which is not countably additive (see Proposition 4.19).
In particular if we want to compactify M (X, ) we must give up the convergence
on all cylinders (which does not seem reasonable) or to modify the topology in a
more substantial way.

We also study suspension flows defined over countable Markov shifts. These
are continuous time dynamical systems defined over non-compact spaces. The
suspensions we consider are constructed over arbitrary countable Markov shifts
(3, 0) and for roof functions 7 : ¥ — R belonging to a class that we denote by R
(for precise definition we refer the reader to Section 6). If 7 is bounded away from
zero there is a one—to—one correspondence between the space of invariant probability
measures for the flow, which we denote by M(X,0,7), and M, = {u € M(Z,0) :
§ 7dp < oo}, The space of sub-probability measures invariant by the suspension flow
is denoted by M<1(3,0,7). In Section 6 we define a topology on M« (X, 0,7),
the topology of convergence on cylinders for the suspension flow, that shares many
properties with the topology of convergence on cylinders on M1 (X, 0).

The class of suspension flows that we study include a wide range of symbolic
models for geometric systems. For example, the symbolic model of the geodesic
flow over the modular surface satisfies all of our assumptions. In this context we
prove,

Theorem 1.4. Let (X,0) be a transitive countable Markov shift and 7 € R. Then
the space of invariant sub-probability measures of the suspension flow M« (X, 0,7),
endowed with the topology of convergence on cylinders for the suspension flow, is
affine homeomorphic to the Poulsen simplex. In particular M<1(3, 0, T) is compact
with respect to the topology of convergence on cylinders.

Some countable Markov shifts without the F—property are particularly impor-
tant (for instance the full shift, or shifts with the BIP property [Sa2]), and we do
want to have some understanding on their spaces of invariant probability measure.
The work done in Section 6 and our auxiliary potential 7 allows us to regain control
in this setting. Indeed, in this general context we are able to describe the set of
invariant probability measures for which the function 7 is integrable (see Lemma
6.1 and Theorem 6.18).
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We stress that the compactifications constructed in this paper have several in-
teresting applications to the thermodynamic formalism of countable Markov shifts.
For instance, in joint work with M. Todd [['TV], we consider finite entropy count-
able Markov shifts (3, o) and study the behaviour of the measure theoretic entropy
of a sequence (p, ), < M(X,0). By the results in this paper there exists a measure
1€ Mg (X, 0) and a sub-sequence of (u,), which converges to p in the cylinder
topology. This property is used to establish stability results for the measure of
maximal entropy, relate the escape of mass with the entropy of the system and to
prove upper-semi continuity of the entropy map. In the compact setting there is no
escape of mass and the properties of the entropy map and the measure of maximal
entropy are classical [Wa, Chapter 8], but in the non-compact case new ideas were
needed. We also mention that the results in [ITV] can be pushed even further to
include potentials, this is discussed in [V] by the second author.

Finally, we remark that over the last few years countable Markov shifts have been
used to code relevant parts of the dynamics for a wide range of dynamical systems.
For example, it was shown by Sarig [Sa2] that countable Markov partitions can
be constructed for positive entropy diffeomorphisims defined on compact surfaces.
The corresponding symbolic coding captures positive entropy measures. These
results have recently been used to prove that C* surface diffeomoprhisms of positive
entropy have at most finitely many measures of maximal entropy [BCS]. In a
different direction, countable Markov partitions have been constructed for Sinai
and Bunimovich billiards, this has allowed for the proof of lower bounds on the
number of periodic orbits of a given period [LM]. Based on the work of Sarig,
countable Markov partitions have been constructed for large classes of dynamical
systems. Our results apply not only to all countable Markov shifts obtained as
symbolic codings of these systems, but also to several non-locally compact symbolic
models. For instance, symbolic codings of interval maps having a parabolic fixed
point [, MP, Sal] or loop systems [BBG].

Acknowledgements. We would like to thank Mike Todd for a wealth of relevant and
interesting comments on the subject of this article. This paper was initiated while
the second author was visiting the first author at Pontificia Universidad Catdlica
de Chile. The second author would like to thank the dynamics group at PUC for
making his visit very stimulating. He would also like to thank Richard Canary for
his invitation to participate of ‘Workshop on Groups, Geometry and Dynamics’
held in Universidad de la Reptblica, where an important part of this work was
preparated.

2. COUNTABLE MARKOV SHIFTS

In this section we define the dynamical systems that will be studied throughout
the article. Let B be a transition matrix defined on the alphabet of natural numbers.
That is, the entries of the matrix B = B(i, j)nxn are zeros and ones (with no row
and no column made entirely of zeros). The countable Markov shift (X, o) defined
by the matrix B is the set

Y = {(zn)nen : B(Tn,Tpt1) =1 for every n e N},

together with the shift map ¢ : ¥ — ¥ defined by o(x1, 2, ...) = (z2,z3,...). For
(a1,...,an) € N we define a cylinder set [a; ...a,] of length n by

[a1...ap]:={zeX:z;=a; for 1 <j<n}.
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We endow X with the topology generated by cylinder sets. This is a metrizable
non-compact space. Indeed, let d : ¥ x ¥ — R be the function defined by

1 if o # vo
d(z,y):=427% ifa; =y forie{0,...,k—1} and xj # yi; (2.1)
0 ifx=y.

The function d is a metric and it generates the same topology as that of the cylinders
sets.

A countable Markov shift defined by the transition matrix B = B(%,j)nxn is
locally compact if and only if for every ¢ € N we have Z;O=1 B(i,j) <o (see [Ki,
Observation 7.2.3]).

An admissible word is a word w = aj...ay,, where a; € N and [ay, ..., a,] is non-
empty. To emphasize the difference between admissible words and points in ¥ we
use bold letters for admissible words.

Let ¢ : ¥ — R be a function. We define var, () = sup,, , lp(z) — p(y)|, where
the supremum runs over points x and y satisfying cZ(%y) < 27", Observe that a
function ¢ is uniformly continuous if and only if var,(¢) goes to zero as n goes to
infinity. A potential ¢ has summable variations if Y, , vary (i) is finite.

In the late 1960s Gurevich [Gul, Gu2] introduced a suitable notion of entropy in
this setting. Note that since the space ¥ is not compact the classical definition of
topological entropy obtained by means of (n,e)-separated sets (see [Wa, Chapter
7]) depends upon the metric. That is, two equivalent metrics can yield different
numbers. Since the entropy of an invariant measure depends only on the Borel
structure and not on the metric, this is a major problem if the entropy is to satisfy
a variational principle. Gurevich introduced the following notion of entropy:

1
h(o) := limsup — log Z Lq1(2),

— n
n—0 Tr:o"T=T

where a € N is an arbitrary symbol and 1, is the characteristic function of the
cylinder [a]. Gurevich proved that this value is independent of the symbol a if (X, o)
is transitive and that the limit exists if (X, o) is topologically mixing. Moreover,
he also proved that this notion of entropy is the correct one in the sense that is
satisfies the variational principle. That is

h(o) = sup {h(p) : pe M(2,0)},

where h(u) is the entropy of the invariant measure p (see [Wa, Chapter 4]) and
M(X, o) is the space of invariant probability measures.

3. TOPOLOGIES IN THE SPACE OF MEASURES

In this section we recall definitions and properties of the weak™ and the vague
topologies and define a new notion of convergence in the space of probability mea-
sures on X, namely the topology of convergence on cylinders. It is with respect
to these three topologies that we will describe the space of invariant probability
measures M (X, 0). It is worth emphasizing that the weak* topology does not al-
low escape of mass, but the vague topology and the topology of convergence on
cylinders do allow it.
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3.1. The weak* topology. Let (X, p) be a metric space. We denote by Cp(X)
the space bounded continuous function f : X — R. We endow Cp(X) with the
CY-topology. This is the topology induced by the norm |f| = sup,cy |f(z)]. It is
a standard fact that Cy(X) is a Banach space. Denote by M(X) the set of Borel
probability measures on the metric space (X, p). Our first notion of convergence in
this set is the following,

Definition 3.1. A sequence of probability measures (), < M(X) converges to
a measure  in the weak* topology if for every f € Cy(X) we have

lim | fdu, = J-fdu.
n—0o0

Remark 3.2. Note that in this notion of convergence we can replace the set of test
functions (bounded and continuous) by the space of bounded uniformly continuous
functions (see [B, 8.3.1 Remark]) or by the space of bounded Lipschitz functions
(see [KKI, Theorem 13.16 (ii)]). That is, if for every bounded uniformly continuous
(or bounded Lipschitz) function f: X — R we have

lim [ fdpn = f fdp,
n—0o0
then the sequence (uy ), converges in the weak™ topology to p.

The weak* topology is the coarsest topology such that for every f € Cp(X) the
map de g — § f dp, with g € M(X), continuous. The following classical result
characterizes weak™ convergence (see [Bi, Theorem 2.1]).

Proposition 3.3 (Portmanteau Theorem). Let (i, )n, 1 be probability measures on
X. The following statements are equivalent.

(a) The sequence (n)n converges to p in the weak* topology.

(b) For every open set O < X, the following holds u(O) < liminf, o i, (O).

(¢c) For every closed set C < X, the following holds 1(C) = limsup,,_,, in(C).

(d) For every set A < X such that ;1(0A) = 0, the following holds u(A) =
limy, o0 fin (A).

A relevant feature of the weak* convergence is that there is no loss of mass since
the constant function equal to one belongs to Cy(X). That is,

Remark 3.4. If the sequence of probability measures (u, ), converges in the weak™*
topology to u then p is also a probability measure.

Also note that if the space (X, p) is compact then the space of Borel probability
measures, M(X), is also compact with respect to the weak* topology (see [Wa,
Theorem 6.5]). An interesting fact is that if (X, p) is separable metric space then
M(X) can be metrized as a separable metric space (see | , Theorem 6.2]).
Actually, there exists an explicit metric that generates the weak™ topology and for
which M(X) is separable if X is separable. This is the so called Prohorov metric
(see [Bi, pp.72-73]). Therefore, if X is a separable metric space then so is M(X)
despite the fact that the space Cp,(X) might not be separable. Actually, if (3, 0) is
a non-compact countable Markov shift then C(X) is not separable, as below.

Remark 3.5. Let (X,0) be a countable (non-compact) Markov shift then Cp(2) is
not separable. Indeed, let (x, ), be a fixed sequence of elements of ¥ with x,, € [n],
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where [n] := {(y1,¥2,...) € ¥ : y1 = n}. Define the set
L:={peCy(X): p(xn) =0o0r p(z,) =1, for every n € N}.

Note that £ contains uncountably many elements. For every countable subset
C < Cy(X) there exists ¢ € L such that for every ¢ € C we have

1
— 2 =,
lo =l =3
hence Cy(X) is not separable.

Let T : (X,p) — (X, p) be a continuous dynamical system defined on a metric
space. We denote by M(X,T) the space of T'—invariant probability measures.
In the following lemma we collect relevant information regarding the structure of

M(X,T).

Lemma 3.6. Let T : (X, p) — (X, p) be a continuous dynamical system defined on
a metric space, then

(a) The space M(X,T), as a subset of M(X), is closed in the weak* topology
([Wa, Theorem 6.10] ).

(b) If X is compact then so is M(X,T) with respect to the weak* topology (see
[Wa, Theorem 6.10]).

(c) The space M(X,T) is a convex set for which its extreme points are the
ergodic measures (see [Wa, Theorem 6.10]). It is actually a Choquet sim-
plex (each measure is represented in a unique way as a generalized convex
combination of the ergodic measures [Wa, p.153]).

Definition 3.7. Let T': (X, p) — (X, p) be a continuous dynamical system defined
on a metric space. We denote by M. (X, T) the set of ergodic T-invariant probabil-
ity measures. An ergodic measure u € M.(X,T) supported on a periodic orbit will
be called a periodic measure. Denote by M,,(X,T) the set of periodic measures.

The next result was obtained by Coudéne and Schapira [CS, Section 6] as a
consequence of shadowing and the Anosov closing Lemma.

Theorem 3.8. Let (X,0) be a transitive countable Markov shift then My(%, o) is
dense in M(X, o) with respect to the weak* topology.

3.2. The vague topology. Let (X, p) be a locally compact metric space. Denote
by M<1(X) the set of Borel non-negative measures on X such that pu(X) < 1.
The set of continuous functions of compact support, that is continuous functions
f + X — R for which the closure of the set {x € X : f(z) # 0} is compact, will
be denoted by C.(X). Note that C.(X) < Cp(X). We will consider the following

notion of convergence.

Definition 3.9. A sequence (un), € M<1(X) converges to p € M<1(X) in the
vague topology if for every f € C.(X) we have

lim | fdu, = deu.
n—0o0

The vague topology is the coarsest topology on M« (X) such that for every f
continuous and of compact support, the map g — § fdu is continuous. We stress
that the total mass is not necessarily preserved in the vague topology. A sequence of
probability measures can converge in the vague topology to a non-negative measure
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of total mass less or equal to one. If X is compact then C.(X) = Cp(X) and
therefore the vague topology coincides with the weak™ topology. We collect the
following results,

Remark 3.10. Let (X, p) be a metric space. Note that the weak* topology extends
to Msl (X)

(a) If X is compact then M« (X) is compact with respect to the weak* topol-
ogy (see [KKl, Corollary 13.30]).

(b) If X is a locally compact separable metric space then M« (X) is compact
with respect to the vague topology (see [[X], Corollary 13.31]) and metrizable
(see [Di, 13.4.2]).

(c) Let X be a locally compact separable metric space. The sequence (tin)n
converges vaguely to p and limy, . i, (X) = p(X) if and only if (t,)n
converges in weak® topology to u (see [[XI, Theorem 13.16]).

(d) Let X be a locally compact separable metric space. The sequence (fi,)n
converges vaguely to p and the sequence (i, ) is tight if and only if (t,)n
converges in weak* topology to u (see [KI, Theorem 13.35]).

Let T : (X, p) — (X, p) be a continuous dynamical system defined on a metric
space. If (pn)n < M(X,T) is a sequence of T—invariant probability measures
that converges in the vague topology to a non zero measure pu, then the normalized
measure u(-)/pu(X) is a T—invariant probability. We call the measure p an invariant
sub-probability and denote by M1 (X, T) the space of T'—invariant sub-probability
measures. Observe that the zero measure belongs to M« (X, T).

Lemma 3.11. Let T : (X, p) — (X, p) be a continuous dynamical system defined
on a metric space, then

(a) The space M(X,T) is a closed subset of M<1(X,T) in the weak* topology.
(b) If X is a locally compact separable metric space then the space M<1(X,T)
is compact in the vague topology.

Proof. The first claim is a consequence of Lemma 3.6, while the second follows from
Remark 3.10. O

Proposition 3.12. Let T : (X,p) — (X,p) be a continuous dynamical system
defined on a metric space. Then the space M<1(X,T) is a convex set and its
extreme points are the ergodic measures and the zero measure.

Proof. The convexity of the space M¢1(X,T) is direct. Note that every invariant
sub-probability u € M« (X, T) with 0 < u(X) < 1, is the convex combination of
a measure in M(X,T) and the zero measure. Also note that the zero measure is
not the convex combination of any set of positive measures. The result then follows
from Lemma 3.6. O

3.3. The topology of convergence on cylinders. Several relevant countable
Markov shifts are not locally compact. Therefore a good notion of convergence in
the space of sub-probabilities is required in this setting. The vague topology is of
no use in the non-locally compact setting since in this case the space C.(X) might
be empty, as below.

Remark 3.13. If ¥ is a non-locally compact transitive countable Markov shift then
C.(X) = . Indeed, if K ¢ ¥ is a compact set then it must have empty interior
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(see [Ki, Observation 7.2.3 (iv)]). Therefore K = 0K, that is, the compact set
equals its topological boundary. If f € C.(X) then consider the open set

A={zeX: f(x) #0} = LR~ {0}).

Note that the support of f is K = A, that is the closure of the set A. But since
f € C.(X) the set K is compact. This means that the compact set K contains an
open set A, contradicting the fact that K = 0K. Therefore C.(X) = .

We now define the notion of convergence-that generalizes the vague topology to
the non-locally compact setting—which is the main topic of this work.

Definition 3.14. Let (3,0) be a countable Markov shift and (uy, )y, ¢ invariant
sub-probability measures. We say that a sequence (), converges on cylinders to
w if limy, o 1, (C) = p(C), for every cylinder C' < X. The topology on M« (%)
induced by this convergence is called the topology of convergence on cylinders.

We emphasize that this notion of convergence induces a topology because the
collection of cylinders is countable and it is a basis for the topology on ¥. For
brevity we will frequently say that (u,), € M<1(2) converges on cylinders to p if
the sequence converges in the topology of convergence on cylinders.

Proposition 3.15. The topology of convergence on cylinders on M1 (X) is metriz-
able.

Proof. Consider the metric

Aiv) = ) o [u(Ca) — (C), (3.1)

n
n=1 2

where (C},), is some enumeration of the cylinders on 3. Note that d(u,v) = 0,
if and only if 4 = v. Indeed, if d(u,v) = 0 then u(C) = v(C), for every cylinder
C. By the outer regularity of Borel measures on a metric space we conclude that
this is equivalent to say that u = v. Symmetry is clear and the triangle inequality
follows directly from the triangle inequality in R. It is clear from the definition of d
that it induces the desired notion of convergence on M (), that is, it generates
the topology of convergence on cylinders. (I

It worth pointing out that since C,(X) is not separable we can not endow the
weak™ topology with a metric like d.

Remark 3.16. Note that the topology of convergence on cylinders, like the vague
topology, allows for mass to escape. Indeed, let ¥ be the full shift on N, which is
not locally compact. Denote by 7 the atomic measure supported on the point 77 :=
(n,n,n,...). Then the sequence (d7), converges in the topology of convergence on
cylinders to the zero measure.

Despite Remark 3.16 the topology of convergence on cylinders is closely related
to the weak™ topology. If there is no loss of mass both notions coincide.

Lemma 3.17. Let (X,0) be a countable Markov shift, p and (pn)n be probability
measures on Y. The following assertions are equivalent.

(a) The sequence () converges in the weak™ topology to p.
(b) The sequence (piy,)n converges on cylinders to p.
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Proof. First assume that (u,), converges in the weak* topology to p. Define f :=
1c € Cy(¥), where 1¢ is the characteristic function of a cylinder. The weak™
convergence implies that lim,, o § fdu, = § fdu, which is equivalent to say that

lim 1,(C) = pu(C).

Since the cylinder C' was chosen arbitrarily we conclude that (i, ), converges on
cylinders to p. Now assume that (u,), converges on cylinders to p. Observe
that an open set O can be uniquely written as a countable union of cylinders, say
O = Uj>1 Ck- Therefore

M M
liminf p,, (O) = liminf p, (U Ck) =pu <U C’k> ,
n—0o0 n—0o0 bl =1
for every M. We conclude that
lim ioréfun((’)) > 1(0).

Proposition 3.3 implies that (p, ), converges in the weak* topology to p. O

We will now prove that the topology of convergence on cylinders generalizes the
vague topology. More precisely, on locally compact countable Markov shifts both
topologies coincide.

Lemma 3.18. Let (X, 0) be a locally compact countable Markov shift and p, (tn)n €
M1 (X2). The following assertions are equivalent.

(a) The sequence (p,)n converges in the vague topology to p.
(b) The sequence (fin)n converges on cylinders to .

Proof. First note that if ¥ is locally compact then every cylinder is a compact set
(see [Ki, Observation 7.2.3]). Assume that (p,,), converges in the vague topology
to u. Let C' € X be a cylinder set, then the characteristic function of C, denoted
by 1¢ belongs to C.(X). Thus,

lim | ledy, = chd,u.

n—o0

Therefore, the sequence (p, ), converges on cylinders to p.

Suppose now that (i), converges on cylinders to p and let f € C.(3). We
will prove that lim, o § fdu, = § fdu. The function f is uniformly continuous,
in particular for every ¢ > 0 there exists n = n(e) € N such that var,(f) < e.
Since the support of f is a compact set there exists M € N such that it is contained
in Uf\il[z] By the locally compactness of ¥ there are finitely many (non-empty)
cylinders of length n, that we denote by (C;)7_,, intersecting Uf\il[z] Note that if
a cylinder of length n intersects a cylinder of length one then it is contained in it,
therefore | J7_, C; = Uf‘il[z] We now define a locally constant function f: ¥ — R
that approximates f. For every i € {1,...,q} choose a point z; € C; and let

f X — R be the function defined by

o fx) ifxedy, forie{l,... q};
fw) = {o itz¢Jl, O

By construction the function f is locally constant depending only on the first n
coordinates, thus var,(f) = 0. Moreover, it is zero on the complement of the
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set UM, [i]. In particular f = 39_ a;lc,, for some sequence of real numbers
(a;){_,. By the definition of the topology of convergence on cylinders we know that
limy, o0 § fdpm = § fdu. Moreover, it follows from our construction that

If = £l = sup|f(2) - fl<e.

The construction of f can be made for every ¢ > 0. In particular we can construct
a sequence (fy), such that |f — fi| < 1/k, and lim,, o fedptm = § fedp. This
immediately implies that lim,, o § fdum = § fdu, which completes the proof. O

3.4. The space of test functions for the topology of convergence on cylin-
ders. The space of test functions for the weak* topology is Cy(X). Similarly, the
space of test functions for the vague topology is C.(X). For duality reasons it is
actually convenient to have a Banach space as the space of test functions. For the
vague topology this is not a serious issue, we can simply consider the closure of
C.(¥) in Cp(X); this gives us the space Cy(X) of functions that vanish at infinity.
More precisely, a function f € Co(X) if it is a continuous functions such that for
every € > 0 there exists a compact set K < X such that for every z € ¥ \ K we
have |f(z)| < e.

It is a natural question to determine what is the space of test functions for the
topology of convergence on cylinders. More precisely, determine a Banach space V
such that (), converges on cylinders to p if and only if lim, o § fdp, = § fdu for
every f € V. From the definition of the topology of convergence on cylinders (Def-
inition 3.14) it is clear that the space V should contain the characteristic function
of a cylinder and finite linear combination of those. Define

H = {f eCy(X): f= Z a;lc,, where a; € R and C; is a cylinder for each z} )
i=1

As with the vague topology, our space of test functions will be the closure of H

in Cp(X), that we denote by H. The following is direct from the definition of the

topology of convergence on cylinders.

Lemma 3.19. Let (¥, 0) be a countable Markov shift and ju, (pn)n © M<1(2) then
(ttn)n converges on cylinders to the measure p if and only if for every f € H we
have

lim | fdu, = de,u.
n—ao0

In what follows we will characterize the space H, in order to do so we will require
the following notions.

Definition 3.20. Let (X, o) be a countable Markov shift and f : ¥ — R a function.
If C is a cylinder of length m, denote by

C(=n):= {meC:am(x)e U[k]}

k=n

For a non-empty set A < ¥ we define

var®(f) = sup {| f(x) = f(y)| : (z,y) € A x A}.
We declare var?(f) = 0 if A is the empty set.
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Lemma 3.21. A function f € Cy(X) belongs to H if and only if the following three
conditions hold:

(a) f is uniformly continuous.

(b) limy—o0 SUP,epn 1 f(2)] = 0.

(¢) limy, e var®CE™(f) = 0, for every cylinder C < X.
Moreover, if % is locally compact, then H coincides with Co(X), the space of func-
tions that vanish at infinity.

Proof. Denote by Hy the space of bounded functions satisfying conditions (a), (b)
and (c). The space Hy is a closed subset of Cy,(X). The inclusion H < Hy follows
directly from the definition of H. Since Hj is closed we obtain that H < H.

We will now prove that Hy c H. Fix f € Hy and € > 0. We will construct a
function g € H such that |f — g|| < e. This would imply that f € H.

Since f is uniformly continuous, there exists ¢ € N such that var,(f) < e. Let
n1 € N be such that sup,cp,;[f(z)| < e, whenever m > n;. Choose ny € N
such that vartl>™(f) < e, whenever i € {1,..,n;} and m > ny. Similarly,
choose n3 € N such that varl¥1G™)(f) < ¢, whenever (i, ) € ]_ﬁ:l{l, .yng} and
m > ng. Inductively, we obtain a sequence {ni,...,ng,ng+1} such that for every
ke {1,...,q} we have varli-#1EGm)(f) < ¢ whenever (iy,...,i1) € Hle{l, vy Mg}
and m > ngy1.

Let f* € Hy and C a non-empty cylinder of length q. We will define a number
that depends on f* and C, which we denote by ls+(C), as follows. Let us first
assume that C'(> n) = ¢, for some n € N. In this case we define l;+(C) = 0.
Now assume there exists a strictly increasing sequence (ng)r < N and points zy €
C n o7 9ng]. In this case we define lp+(C) := limy_o f*(xx). It follows from
condition (c) that I« (C') is well defined: it is independent of the sequences (ny)
and (zk)k-

A point (ay,...,ax) € Hf=1{1,...,ns} defines the cylinder [ay,...,ar]. Collect
all the non-empty cylinders that arise in this way and call this set . Define
Q= UZ:l Q.

Let us first prove the result when {;(C) = 0 holds for every C € €. By our choice
of {n1,...,ng41} and the assumption l¢(C') = 0, we know that for every k € {1, ..., ¢}
we have

sup |f(z)] <e, (3.2)

ZDE[ilp..ﬂlk](Zm)

whenever (i1, ...,9;) € ]_[I;:l{l, .yns}, and m > ngyq (for consistency define the
supremum over the empty set as zero). For every C € ), choose a point z¢ € C.
Define g := },ccq, f(zc)lc. Observe that if x € Joeq, €, then [f(z) — g(z)] <&
(recall that vare(f) < ). If # does not belong to [Jeeg, €, then x belongs to a

cylinder of the form [iy, ..., 4k, b], where (i, ...,ix) € Hle{l,...,ns} and b > ngyq
(if £ = 0, then = € [b] where b > nq). By (3.2) and our choice of n; we obtain that
|f(z)] < e. We therefore have |f — g| <e.

We will now explain how to reduce the general case to the situation where
1;(C) = 0 holds for every C € .

Define hy 1= Y ocq, I1(C)lc and fi := f — h1. We claim that [y, (C) = 0, for
every C' € Q. First suppose that there exists n such that C(> n) = . In this
case, by definition, we have that Iy, (C') = 0. It remains to consider the non-trivial
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case in the definition of I, (C'). Let (ng)r < N be a strictly increasing sequence and
(zk)x points in ¥ such that ) € C n o~ ![ng]. Then

1 (C) = Tim fu(ax) = Jim (f(ay) = ha(ar) = 1p(C) — lim B (z).

Since hy = Y ceq, [f(C)1lc, we know that hy(xx) = [;(C) (observe that all cylinders
in ©; have length 1). In particular if, (C) = 0.

Now define hy := > ocq, I, (C)lc, and fa := f1 —hy. We claim that Iy, (C) = 0,
for every C' € Q7 U Qy. As before, first suppose that there exists n such that
C(> n) = . In this case, by definition, we have that Iy, (C) = 0. It remains to
consider the non-trivial case in the definition of iy, (C). Let C; € Q; and Cj € Qs.
Choose a strictly increasing sequence (ng)r < N and points (zx)r in ¥ such that
x5, € Oy n o~ 2[ng]. Then

l2(C2) = lim fowy) = lim (fi(zr) = ho(zk)) = 1 (C2) = lim ha(zy)-

As before ha(zg) = I, (C2), because xy, € Co N o~ 2[k]. We conclude that lf,(Cs) =
0. Similarly, choose sequences (mg)r < N and (yr)r < X such that y, € C; n
o~ ![mg], then

ly,(C1) = Jim fa(ye) = Jim (f1(yx) — ha(yr)) = 1, (C1) — Jim ha (yr).-

Since hy is a finite linear combination of indicators of cylinders of length 2 we obtain
that limg_,o ho(yk) = 0. By construction we have that Iy, (C7) = 0. We conclude
that {7, (C) = 0, for every C' € Oy U Q.

Continue this process and define (h;){_; and (fi){_; such that fi = fr—1 — hy,
for every k e {1,...,q} (where we set fo = f). By construction I, (C) = 0 for every
cylinder C € Ule ;. In particular I, (C') = 0, for every cylinder C' € Q. Finally,
observe that f, = f—>{_, hg. Since h:=>}]_, hy is a function in H, it is enough
to approximate f, (we can add back the function h afterwards, H is a vector space).

We will now assume that ¥ is locally compact. Since ¥ is locally compact the set
C(= m) is empty for large enough m. In particular condition (c¢) is always satisfied.
By definition a function f € Cy(X) belongs to Cy(X) if and only if condition (b)
holds. In particular condition (b) implies condition (a). Therefore H coincides with
Co(2).

([l

By abuse of notation we denote by Cy(X) the space of test functions for the
topology of convergence on cylinders; this is reasonable because H = Cy(X) in
the locally compact case. We say that f wvanishes at infinity if f € Co(X). To
summarize, a function f € Cp(X) vanishes at infinity if it satisfies conditions (a),
(b) and (c). It follows from the discussion above that the Banach space Cp(X) is
the space of test functions for the topology of convergence on cylinders. In other
words, the map p+— § fdu is continuous in M« (X, o), whenever f € Cy(Z).

4. THE SPACE OF INVARIANT SUB-PROBABILITY MEASURES IS COMPACT

We already noticed in Lemma 3.11 that if (X, 0) is a locally compact transitive
countable Markov shift the space of invariant sub-probability measures M <1 (3, o)
is compact with respect to the vague topology. It is a consequence of Lemma
3.18 that M<;(3,0) is also compact with respect to the topology of convergence
on cylinders. In this section we prove that the space M<1(X,0) is compact with
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respect to the topology of convergence on cylinders for a larger class of transitive
countable Markov shifts, that is, for countable Markov shifts with the F—property
(see Definition 4.9). Our results are also sharp: if (X,0) does not satisfy the
F—property, then there are sequences of periodic measures that converge to a
finitely additive measure that is not countably additive (see Proposition 4.19). Our
next result states that invariance is preserved under limits provided the limiting
object is a countably additive measure.

Lemma 4.1. Let (X,0) be a countable Markov shift. Let (pin)n be a sequence of
invariant probability measures converging on cylinders to a sub-probability measure
w. Then p is an invariant measure.

Proof. The measure p is invariant if it is equal to o4u := pu(c~!). Note that, in
order to prove the invariance, it is enough to prove that o, u(D) = p(D), for every
cylinder D. Observe that if D is a cylinder then 071D = Ui=1 Di, where (D;);
is a finite or countable collection of cylinders. Since p, is invariant we have that
pn(D) = pp(c™tD). If 7'D = (J*, D; is a finite union of cylinders we obtain
that

n—0o0 n—o0 n—o0

p(D) = lim pn(D) = lim pp(o~'D) = lim g, (U Di) = p(e7'D).

If = 1D is union of infinitely many cylinders we have

M M
_ 1 1 S T = )
p(D) = lim pu, (D) = lim pn (07" D) > lim i, <U1 Dz> I <U1 Dz) ,
for every M € N. We conclude that u(D) > u(c='D). We therefore proved
that for every cylinder D we have u(D) > p(oc~1D). Suppose D is a cylinder of
length s and enumerate all cylinders of length s by (Fx)x with E; = D. Since
w(Ex) = p(oc~tEy), for every k € N, we obtain

1 <U Ek> = (U J_lEk> . (4.1)
k=1 k=1

Observe that (Ey);, and (07" Ey )y are partitions of ¥, in particular ¥ = (-, Ex =
Uks1 0 ' Ek. This implies that (4.1) is an equality, therefore u(Ey) = p(o™'Ey),
for every k € N. In particular we obtained that u(D) = pu(c~1D), as desired. O

Remark 4.2. Recall that the periodic measures are dense in M (X, o) with respect to
the weak™® topology (see Theorem 3.8). It is a consequence of Lemma 3.17 that the
same holds for the topology of convergence on cylinders. In other words, given an
invariant probability measure y, there exists a sequence (u,,)n of periodic measures
such that lim,, o d(u, 1yn) = 0.

Remark 4.3. Recall that every element of M<y(X,0) is of the form Au, where
we M(X,0)and A€ [0,1].

In order to study the space M<1(2, o) we will model it with a space of functions.

Definition 4.4. Denote by FinCyl(¥) the collection of non-empty finite unions
of cylinders in ¥. Let M (X) be the space of functions F' : FinCyl(X) — [0,1] and
L(X) € M(X) the space of functions satisfying the following conditions.

(a) If C < C" are cylinders, then F'(C) < F(C").
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(b) é? (L{Z;l Cr) = >_, F(Cy), for every (finite) collection of disjoint cylinders
Cr)k-

Remark 4.5. Observe that FinCyl(X) is a countable set. Fix a bijection between
FinCyl(¥) and N. This bijection allow us to identify M (%) with [0,1]Y. From
now on we consider L(X) as a subset of [0, 1]N. We endow M () with the product
topology. Observe that (R), < M(X) converges to R € M(X) if and only if

lirrolo R, (D) = R(D),
for every D € FinCyl(X).

Remark 4.6. Observe that the metric d, see equation (3.1), also defines a metric
on L(X). Indeed, if F,G € L(X) then

AF.G) = Y] 5:|F(Co) ~ G(Ch)l, (12)
n=1

where (C),),, is some enumeration of the cylinders on ¥, is a metric on L(X). It is
important to observe that the topology induced by d on L(X) is compatible with
the product topology on M (X) = [0, 1]". Indeed, lim,,_,, d(F,, F) = 0, if and only
if lim,, o, F,(C) = F(C), for every cylinder C. By condition (b) in the definition
of L(X) this is equivalent to lim,_,o, F), (D) = F(D), for every D € FinCyl(X). In
other words, there exists a continuous injective map from the set L(X), endowed
with the topology generated by the metric d, into the space [0, 1] endowed with
the product topology.

Lemma 4.7. The set L(X) is compact with respect to the topology induced by d.

Proof. We will first prove that L(X) is a closed subset of M(X). Let (F,), be
a sequence of functions in L(X) that converges to F' € M(X). Let C and D be
cylinders such that C < D. Then F,(C) < F,(D), for every n € N. We conclude
that

F(C) = JE%OF"(C) < HIE%)FW(D) = F(D).

Similarly, if (C)}3%, is a finite collection of disjoint cylinders we have that

F Ck = lim Fn Ck = lim Fn Ck = F Ck .
U
We conclude that F' € L(X). It follows that L(X) is a closed subset of M (X). Since
[0, 1] is compact, by virtue of Remark 4.6 we have that L(X) is compact with the
topology induced by d. O

Remark 4.8. Observe that every sub-probability measure on ¥ can be identified
with a unique function F' € L(X). More precisely, given u € M<1(3, o) we define
F, € L(X) by F,(D) := (D), for every D € FinCyl(X). The map p — F,
defines a continuous embedding M (%, o) < L(X), when we endow M (2, o) with
the topology of convergence on cylinders. We say that a sequence (p,), € M(2, 0)
converges to F' € L(X) if (F,, ), < L(X) converges to F.

n

In light of Remark 4.8, in order to prove that the space of invariant sub-probability
measures is compact with respect to the cylinder topology it suffices to prove that
M(X,0) € L(X) consist of invariant sub-probability measures. At this point we
will make a further assumption on the countable Markov shifts considered.
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Definition 4.9. A countable Markov shift (3, o) is said to satisfy the F—property
if for every element of the alphabet i and natural number n, there are only finitely
many admissible words of length n starting and ending at i.

Remark 4.10. Every countable Markov shift (X, o) of finite topological entropy and
every locally compact countable Markov shift satisfies the F—property. There also
exists infinite entropy non-locally compact countable Markov shifts satisfying the
F—property. Indeed, let (a,), be a sequence of positive integers such that

lim 1 log a,, = 0.

n—oo n
Consider the countable Markov shift defined by a graph made of a,, simple loops of
length n which are based at a common vertex and otherwise do not intersect. This
system has the desired properties.

Proposition 4.11. Let (X, 0) be a transitive countable Markov shift satisfying the
F—property. If (un)n is a sequence of periodic measures converging to a function
F e L(X), then F extends to an invariant sub-probability measure.

Proof. We start by proving that F extends to a measure. Fix a cylinder C' =
[a1, ..., am], and denote by Ck the cylinder [ay, ..., a4, k]. We will need the following
lemma.

Lemma 4.12.
F(C) = ). F(Ck). (4.3)
k>1
We assume that F(C) > 0, otherwise there is nothing to prove (both left and
right hand side would be zero). From now on assume that n is sufficiently large so
that u,(C) > 0. Let p, be a periodic point associated to p, such that p, € C.

Proof of Lemma /.12. Observe that

k—1 k—1
F(C) - 2 F(Cs) = lim <,un(C) - Z Mn(08)> = lim u, (U Cs) )
s=1 noe s=1 noe s=k
therefore Lemma 4.12 is equivalent to prove that limy, o limp, o pn (U=, Cs) = 0.
We will argue by contradiction and assume that

i, Y g (UC) —A=0

Observe that (limnHOO :“n(Us;k Cs))k decreases as k goes to infinity. We obtain
that limy, o pin([Jysy Cs) = A, for every ke N.

Recall that C' = [ay,...,am,] and define the set @ < N by the following rule:
q € Q if and only if a,,q is an admissible word. Define a function p : Q — Z as
follows: p(i) = k if there exists an admissible word starting at ¢ and ending at a;
of length k + 1, but there is not any such word of length less or equal to k. The
map p is proper, in other words, p~!([a,b]) is finite for every a,b € R. Indeed,
assume by contradiction that p~1([a,b]) is infinite, this would imply that p~!(c)
is infinite for some ¢ € N. For each w € p~!(c) we have an admissible word of
length ¢ + 1 connecting w and ay, this will create an admissible word (with length
m+ ¢+ 1) of the form aj...amw...a;. This contradicts the fact that (X, o) satisfies
the F—property. We conclude that p : Q — Z is proper.
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Choose ko € N such that p(s) > | %] +1, for every s € Q satisfying s > ko. Recall
that p,, is a periodic point associated to the measure u,. We denote the minimal
period of p, by m + t,,, and let [a;...amb;...by, | be a neighborhood of p,. By the
definition of p,, we know that u,(Cs) is approximately the number of times that
the word aj...ams appears in wy, := aj...ambi...bg, a1...am, divided by m +¢,,. If
s = kg, then each block aj...ay,s appearing in wy, is contained in a longer block
of the form ay...aysry...rg, where B > [%J + 1, and r; # ay, for all t € {1,..., B}.
In particular, for s > kg, each block of the form aj...a;,s generates B letters that
do not contribute to the number of blocks aj...an, in wy,. Choose ng such that
tn(Ussr, C8) = 4 for every n > ng. This implies that the number of blocks of
the form aj...am,s, where s > ko, in wy, is at least (m+t,)A/2. As explained above,
each of those blocks generate a disjoint block of length (m + B + 1). The number
of letters used in those disjoint blocks add up to (m + B + 1)(m + t,,)A/2. Observe
that (m + B + 1)A/2 > 1, which contradicts that the total number of letters is
(m +t,). We conclude that A = 0. O

We will now use Kolmogorov’s extension theorem to prove that F' comes from a
measure on . To each I,, := {1,...,n} = N we associate a measure on N»: this is
the atomic measure v, that assigns to [myq, ..., m,] the number F([m, ..., m,]). We
remark that if my...m, is not an admissible word of ¥, then F([mq,...,my]) = 0.
In order to use Kolmogorov’s extension theorem and obtain a measure on N we
need to verify the consistency of the family (), in other words, that

Un((my,...,mp)) = vpy1((ma,...,my) x N).

By definition of the family (v,), this is equivalent to the formula

F(D) = ). F(Dk),

k=1

for D = [myq,...,my]. Lemma 4.12 implies the consistency of (v;,),. It follows from
Kolmogorov’s extension theorem that F' extends to a measure p on the full shift
NN, Observe that by definition of F the measure y is supported on ¥ < NN, The
invariance of p follows from Lemma 4.1. a

Remark 4.13 (Limits are not always measures). We now exhibit examples of count-
able Markov shifts that do not satisfy the F—property for which sequences of mea-
sures converge to a function F that can not be extended to a measure. Let ¥ = NN
be the full shift. Consider the periodic point p, = 1n, and denote by p,, the periodic
measure associated to p,. Observe that (u,), converges to F' € L(X), where F is
given by F([1]) = 1/2, and F(C) = 0, for any other cylinder C' < ¥. In this case it is
clear that F' does not come from a measure: use the decomposition [1] = | J -, [1s],
and the definition of F'. Equivalently, the formula F([1]) = >} ., F'([1s]), does not
hold. In the full shift we can not expect to always have a measure as the limit of
probability measures (in the topology of convergence on cylinders). Similar exam-
ples are easy to construct. For instance consider the countable Markov shift defined
by the matrix M = (M,;), where Myy = 1 = My, for all k € N, and M;; = 0 for
the remaining entries. In this case the same choice of measures (u,, ), would provide
a sequence of invariant probability measures that do not converge to a countably
additive measure.
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Proposition 4.14. Let (X,0) be a transitive countable Markov shift satisfying
the F—property. Then any sequence of invariant probability measures (yn)n has a
subsequence that converges on cylinders to an invariant sub-probability measure.

Proof. Since M(X,0) c L(X), by compactness of L(X) there exists a subsequence
(tn, )k converging to a function F' € L(X). Since the periodic measures are dense
in M(X,0) (see Remark 4.2) we can find a sequence of periodic measures (vy)g
such that d(fin,,vr) < 4. It follows that limg_ d(vg, F') = 0. We can now use
Proposition 4.11 and conclude that F' corresponds to an invariant sub-probability
measure. |

Remark 4.15. The proof of Proposition 4.14 also implies that M(X,0) € M<1(2, 0).
Indeed, if '€ M(X,0), then we have a sequence of invariant probability measures
(t4n)n converging to F'. As in the proof of Proposition 4.14 we conclude that F' can
be approximated by periodic measures, and therefore Proposition 4.11 implies the

result.

As mentioned in the introduction, to prove that M<; (3, o) is affine homeomor-
phic to the Poulsen simplex we need to prove the existence of a sequence of invariant
measures that converges on cylinders to the zero measure. In our next result we
obtain such property. We emphasize that if (3, o) does not satisfy the F—property,
then this is not necessarily true (see Example 4.17).

Lemma 4.16. Let (X,0) be a transitive countable Markov shift satisfying the
F—property. Then there exists a sequence of invariant probability measures con-
verging on cylinders to the zero measure.

Proof. Fix some natural number k. We say that Property (k) holds if there exist
arbitrarily long admissible words of the form aj...am, where {a1,a,} < {1, ..., k},
and a; = k + 1, for all i € {2,...,m — 1}. If Property (k) holds we can construct a
sequence of periodic measures (M%k))n such that lim,,_,q ,ugc)(U;:l[s]) = 0. First
observe that there exists My = My(k) such that every two letters in {1,...,k}
can be connected with an admissible word of length less or equal to My. By

hypothesis for every n € N there exists an admissible word w,, = a(l")...aﬁi,‘j, where

{agn), ag,?i} <{1,..,k},and az(-n) > k+1,forallie{2,..,m,—1}, and m, > n. We
can extend the word wy, into an admissible word w] = a(ln)...ag,lr).b(ln)...bgt:)agn),
where s, < My. The word w), can be used to define a periodic orbit, and therefore
a periodi () on . Ob

periodic measure, say fy ~, on 2. serve that

k
n+2 My + 2
ugk>(U[s]>< ke k)
s=1

Sp + My, n

which readily implies that lim,, uglk)(U];:l[s]) = 0.
We will now verify that under the hypothesis of Lemma 4.16 Property (k) holds.
Assume by contradiction that this is not possible, in other words that any such

word has length less or equal to Ny. Define
T:{neN:n=2k+1} >N,

in the following way: T'(n) = r, if there exists an admissible word of length r with
first letter in {1,...,k} and ending at m, but there is no such admissible word of
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length strictly less to r. Similarly define
S:{neN:nzk+1} >N,

in the following way: S(n) = r, if there exists an admissible word of length r + 1
with first letter n and ending at some letter in {1,...,k}, but there is not such
admissible word of length less or equal to r. By definition of T" and S we know that

given n > k + 1, there exists an admissible word y, := c(ln)...cg_f‘()n)flnd(ln)...d(srzzl),

where {cgn), dgz)n)} c{1,...,k} and the rest of the letters are strictly larger than k.
Observe that by assumption we have T'(n) + S(n) < Ny, for every n > k + 1. For
n = k + 1 define W(n) as the biggest letter in the word y,,. We can inductively
choose a sequence (n:); such that W(n;) < ngy1, and observe that (yn,): are
pairwise distinct. As with the words (wy,),, we can extend each y, to an admissible

word y', i= e{™ ey £ £ where s, and r, are less than My, and e\ =

1= fr(:l) The word y,, defines a periodic point of period < 2My + Np. Since
(¥n, )t are pairwise distinct we found infinitely many periodic points of periods less
or equal to 2My + Ny (starting and ending at 1), which contradicts that (3, 0)
satisfies the F—property. We conclude that Property (k) holds for every k € N.

For every k € N we obtain a sequence of periodic measures (uglk))n such that

lim,, o u%k)(Uf,:l[s]) = 0. Let n; be such that /lgt?(U];:l[S]) < +. To simplify

notation we define vy, := ug?. We claim that (vg), converges on cylinders to the

zero measure. Observe that for & > m, we have

m k
v([m]) < v (UM) <u, (UM) <t

We conclude that limy_,o vg([m]) = 0. Since m € N was arbitrary we conclude
that (vg)x converges on cylinders to the zero measure. [

FEzxample 4.17. We exhibit an example of a countable Markov shift of infinite en-
tropy not satisfying the F—property, for which there is no sequence of measures
converging to zero in the cylinder topology. Let (X,0) be the countable Markov
shift defined by the graph formed by infinitely many loops of length two rooted
at a common vertex. That is, the allowed transitions are of the form 1 — N and
N — 1 for every N € N, this example was also considered in Remark 4.13. The
system has infinite entropy, since it has infinitely many periodic orbits of period
two intersecting [1]. The frequency of the digit 1 is at least 1/2 for every element
of ¥. Therefore, if p is an ergodic measure then u([1]) = 1/2. Thus, for any se-
quence of invariant measures (fy, ), we must have that liminf,,_,o p,([1]) = 1/2. In
particular, the sequence (), does not converges to zero in the cylinder topology.

We can now prove the compactness of the space of sub-probability measures. As
explained in the introduction a compactification of the space of invariant probability
measures is important for applications (for instance see [[TV] and [V]).

Theorem 4.18. If (X,0) is a transitive countable Markov shift satisfying the
F—property. Then the space M<1(X,0) is compact with respect the topology of
convergence on cylinders.
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Proof. Tt is a consequence of Remark 4.15 that M(X,0) € M<1(3,0). It is enough
to prove that M(X,0) = M<1(2,0). Let (un)n be a sequence of invariant prob-
ability measures converging on cylinders to the zero measure (see Lemma 4.16).
An element in M¢;(X,0) has the form Ay, where p is an invariant probability
measure and A € [0,1]. Define v, = Au + (1 — A\)pp,. Observe that (v,), conver-

gences on cyliders to Au. This concludes that M(X,0) = M« (3, 0), and therefore
Mc1(3,0) is compact. O

The idea behind Remark 4.13 can be used to prove that Theorem 4.18 is sharp.
We will prove that without the F—property it is possible to construct a sequence
of invariant measures that converges on cylinders to a finitely additive measure
that is not countably additive. In particular, Theorem 4.18 is false without the
F —property assumption.

Proposition 4.19. Suppose that (X,0) does not satisfy the F—property. Then
there exists a sequence of periodic measures that converges on cylinders to F' € L(X),
where F' can not be extended to a measures.

Proof. Since (3, 0) does not satisfy the F—property there exists a symbol i and
natural number n such that there are infinitely many admissible words of length n
that start and end at i. The set of admissible words of length k& + 1 starting and
ending at i, where the symbol i only appears at the beginning and at the end of
the word is denoted by Ay. By hypothesis there exists ¢ < n such that |A4,] = .
Set A, = {wy, : k € N}. Observe that each wy € A, defines a periodic measure that
we denote by ux. Maybe after passing to a subsequence we can assume that (pg )
converges on cylinders to F' € L(X). By construction we know that p([i]) =

Observe that py([ir]) is equal to 0 or %, for every k and r. If limy_,o pr([ir]) =

)

Q= ORI

for every r, then F' can not come from a measure: », -, F([ir]) = 0, but F([i]) =
We assume there exists ry such that limy_,qo p([ir1]) = %, which is equivalent to
say that pg([ir1]) = %, for every k sufficiently large. We can repeat the process
and conclude that if limy_,o px([ir1s]) = 0, for every s, then F' does not come from
a measure. We can assume that there exists rp such that pg([irira]) = %, for k
sufficiently large. By repeating this process we obtain that F' does not come from
a measure or that ug([iry..rq-1]) = %, for k sufficiently large. This last condition
is equivalent to say that the sequence (ug)r stabilizes, which contradicts that the
measures are pairwise different.

(]

In Section 6 we will be interested in countable Markov shifts that do not nec-
essarily have the F—property. Despite of Proposition 4.19 we can regain control
by imposing an integrability condition on the sequence of probability measures
(see Proposition 6.12). This integrability condition will rule out the sequence con-
structed in Proposition 4.19.

5. THE POULSEN SIMPLEX

We now prove one of our main results, in which we characterize the spaces
M1 (%, 0) and M(X,0) for countable Markov shifts satisfying the F—property.

Theorem 5.1. Let (X,0) be a transitive countable Markov shift satisfying the
F—property. Then M<1(X,0) is affine homeomorphic to the Poulsen simplez.
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Proof. An element in M (X, 0) has the form Au, where p is an invariant prob-
ability measure and A € [0,1]. To prove that M<;(3,0) is the Poulsen simplex
it is enough to prove that the extreme points of M<1(3, o) are dense (we already
know that M« (X, 0) is a metrizable convex compact Choquet simplex). We will
approximate the measure A\u with periodic measures. As explained in the proof
of Theorem 4.18, we can construct invariant probability measures (1), such that
limy, o0 d(Vn, Apt) = 0. By Remark 4.2 we can find a sequence (7,), of periodic
measures such that d(7,,v,) < 1. This implies that (,), converges on cylinders to
A, and therefore, by the main result of [LOS], M« (X, o) is affine homeomorphic
to the Poulsen simplex. O

Since the extreme points of M<1(X,0) are the ergodic probability measures
together with the zero measures, it follows directly from Theorem 5.1 and Lemma
3.17 that,

Theorem 5.2. Let (X,0) be a transitive countable Markov shift satisfying the
F—property. Then M(X,0) is affinely homeomorphic to the Poulsen simplex minus
a vertex and all of its conver combinations.

Corollary 5.3. Let (X,0) be a transitive countable Markov shift satisfying the
F—property. Then the set M (3, 0) is path connected.

Proof. The set of extreme points of the Poulsen simplex is path connected [LOS,
(4) p.101]. It follows from Theorem 5.1 that the set M.(X,0) u {0,,}, where 0,,
denotes the zero measure is path connected. Denote by @ := [—1,1]" the Hilbert
cube and let P := {(z1,22,...) € Q : |z,| < 1, for every n € N}. It was proved in
[LOS, Theorem 3.1] that there exists a homeomorphism h between the Hilbert cube
@ and the Poulsen simplex which maps P onto the set of extreme points of the
Poulsen simplex. Note that P is homeomorphic to l3. Denote by z = h=1(0,,) € P.
For any z,y € P ~\ {z} it is clear that there exists a continuous path p: [0,1] — P
such that p(0) = z,p(1) = y and p(t) # z for every ¢t € [0,1]. Therefore the set
M(X, o) is path connected. O

6. THE SPACE OF INVARIANT MEASURES FOR SUSPENSION FLOWS

In this section we study the space of invariant probability measures of a suspen-
sion flow defined over a countable Markov shift.

6.1. Suspension flows. Let (X,0) be a countable Markov shift and 7 : ¥ — R
a continuous function bounded away from zero, that is, there exists ¢ = ¢(7) > 0
such that 7(z) = ¢, for all x € 3. Consider the space

Y ={(z,t) e xR: 0 <t <7(x)},

with the points (z,7(z)) and (o(z),0) identified for each x € . The suspension
flow over o with roof function 7 is the semi-flow © = (6;);>0 on Y defined by

0i(x,s) = (z,s +t), whenever s +t € [0, 7(x)].

In particular, 0, (x,0) = (o(x),0). The space of invariant probability measures
for the shift is related to the space of invariant probability measures for the flow,
that we denote by M(X, o, 7). Indeed, it follows from a classical result of Ambrose
and Kakutani [AK] that,
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Lemma 6.1. Let (Y,0) be a suspension flow over (X,0) with roof function T
bounded away from zero. Let

M, = {MEM(E,U):JTCZM<OO}.

The map ¢ : My — M(X,0,7) defined by
w % Leb
i v
where Leb is the one dimensional Lebesque measure, is a bijection.

We denote the inverse of ¢ by 1. We will be particularly interested in a special
class of roof functions.

Definition 6.2. A function 7 : ¥ — R belongs to the class R if the following
properties hold:

(a) 7 is uniformly continuous, bounded away from zero, and vary(7) is finite,

(b)

lim inf 7(x) = o0,
k—ow0 x:x1=k

where x7 is the first coordinate of x.

Remark 6.3. The class R includes a wealth of interesting examples. For instance,
the geodesic flow over the modular surface can be coded as a suspension flow over
the full-shift on a countable alphabet, ¥ = NV, with a roof function 7 belonging to
R, see [GI, KU] for details. A large class of examples belonging to the class R is
to be found in one-dimensional dynamics. Indeed, the class of Expanding-Markov-
Renyi (EMR) maps is a class of interval maps with infinitely many branches which
was introduced by Pollicott and Weiss in [P W] and has been extensively studied. Tt
turns out that if f is an EMR map then the symbolic version of the corresponding
geometric potential log | f’| belongs to R. These potentials carry the relevant fractal
information of the system as well as the coding of relevant equilibrium measures
such as Sinai-Ruelle-Bowen measures. An example of an EMR map is the Gauss
map.

6.2. The topology of convergence on cylinders. The space of invariant sub-
probability measures of the suspension flow is denoted by M« (X, 0, 7). In this
section we endow this space with a topology that makes it compact whenever 7 € R
(see Theorem 6.16). The topology we consider is an adaptation of the cylinder
topology defined in sub-section 3.3. Let (Y,0) be a suspension flow over (3,0)
with roof function 7 and ¢ = ¢(7) > 0 such that inf 7 > c.

Definition 6.4. Let (v,,), and v be measures in M<;(X, 0, 7). We say that (v,)n
converges on cylinders to v if

lim v, (C x [0,¢]) = v(C x [0,c]),

n—0oo

for every cylinder C' < X.
Recall that by Kac’s formula we know that

(S
v(C x [0,¢c]) = [T

whenever v € M(3,0,7) and p = ¢ (v).
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Remark 6.5. Let v and (), be invariant probability measures for the suspension
flow and set p,, = ¥(vy,), and p = ¥(v). From the definition of 1) we have that the
following statements are equivalent

(a) The sequence (vy,), converges on cylinders to Av, where A € [0, 1].
(b) The following limit holds

o 1(C) _(C)
n—00 STdUn STd,u

for every cylinder C' < X.
Moreover, A1y and Aa1s are equal if and only if
A1 (C x [a,b]) = Xova(C X [a,b]),
for every cylinder C' < ¥ and a,b € R. By Kac’s formula this is equivalent to
m(C) _ , #2(C)
§rdin §rdps’

A

for every cylinder C' < X.

Lemma 6.6. The topology of the convergence on cylinders in Mg (X,0,7) is
metrizable.

Proof. Let p: Mc1(X,0,7) X M<1(X,0,7) > R, be defined by

p,2) = 3] 52 1o x [0,6]) = va(Ci x [0, ),

k=1

where (C}); is some enumeration of the cylinders of ¥ and ¢ = ¢(7). The map p is
a metric. Indeed, let v1 = A\jp(p1) and vo = Aapp(p2) be in M1 (X, 0,7), where Ay
and Ay are in [0, 1]. Suppose that p(v1,v2) = 0. By Remark 6.5 we know that

m(C) _ m(C)
— N2 )
§rdp §rdus
for every cylinder C' < . If Ay = 0 we necessarily have \s = 0: in this case 1, and
Vo are both the zero measure. Assume that \; # 0, then

A

Ao § Tdin
m(C) == pe(C),
( ) Al STd/J:Q ( )
for every cylinder C' ¢ ¥. By the outer regularity of Borel measures on a metric
space we conclude that uy = Apug, where A = i—f% This immediately implies

that Als"fjilﬂl = )\2 75_512“27

are easily verified. Note that (v,), converges on cylinders to v if and only if
limy, 00 p(Vn, V) = 0, that is, the topology of convergence on cylinders is metrizable.
O

and therefore v; = v5. The other properties of a metric

Our next result should be compared with Lemma 3.17. It says that the topology
of convergence on cylinders coincides with the weak* topology on M (X, 0, 7). We
emphasize that this result holds for every 7 which is bounded below.

Lemma 6.7. Let v and (v,), be measures in M(XZ,0,7). The following assertions
are equivalent

(a) The sequence (vy)n converges in the weak™ topology to v.

(b) The sequence (vy,), converges on cylinders to v.
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Proof. Let C' < X be a cylinder. Observe that 0(C x [0, ¢]) = C x {0, ¢}. Since v is
a flow invariant probability measure we know that v(C' x {z}) = 0, for each x € R.
We conclude that v(0(C x [0,c¢])) = 0. Finally use Proposition 3.3(d) to conclude
that (a) implies (b).

We will now prove that (b) implies (a). A base for the topology in Y is given by

Q2 :={C x (a,b) Y : C cylinder for ¥ and a,b e Q with a < b}.

It follows from the flow invariance of the measures that for every set C' x (a,b) ¢ Y
we have

lim v, (C x (a,b)) = v(C x (a,b)).

n—o0
Observe that a finite intersection of elements in 2 is still in Q. Note that each
open set O Y can be written as a countable union of elements in 2, say O =
Ur=1(Cr x (ax,br)). The result now follows from [Bi, Theorem 2.2]. O

One of the main properties of the class R is that we can rule out the escape
of mass by imposing a uniform bound on the integral of 7 (see Lemma 6.8). This
illustrates the importance of part (b) in Definition 6.2.

Lemma 6.8. Let (iun)n € M(Z,0) and p € Mg (2,0) be such that (fin)n con-
verges on cylinders to the measure p. Let 7 € R and assume there exists M € R
such that §rdp, < M, for everyn € N. Then p is a probability measure. Moreover,
(tn)n converges to p in the weak™ topology.

Proof. Observe that for every k € N we have

(it o) o (1) = f e < a1

s>k
then
M
n S Sy~
K <5L>Jk[ ]> infg.po>k 7(2)
This is equivalent to i, ({J,x[s]) =1 — mfm]% By definition of the conver-

gence on cylinders we have

. M
u (U[s]) = Jim_ i (U[81> SR S——

s<k s<k

Since 7 € R we can conclude that limy_e pt((J,-,[s]) = 1, and therefore y is a
probability measure. Since the sequence (p,), converges on cylinders to a proba-
bility measure we conclude that (u, ), converges in the weak™ topology (see Lemma
3.17). O

Our next two lemmas completely describe the topology of convergence on cylin-
ders in terms of convergence of measures in X.

Lemma 6.9. Let 7 € R. A sequence (V) € M(E,0,7) converges on cylinders to
the zero measure if and only if

lim | 7dy(v,) = .

n—o0
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Proof. To simplify notation define p,, = 1 (v,). We will first prove that

lim | 7du, = o, (6.1)

n—0o0

implies that (v,,), converges on cylinders to the zero measure. Note that equation
(6.1) implies that

lim Hn(C) =
n—00 STd,un

)

for every cylinder C. In virtue of Remark 6.5 we get that (), converges on cylin-
ders to the zero measure. To prove the other implication we argue by contradiction:
suppose that the sequence (v, ), converges to the zero measure and that there exists
a subsequence (ny) such that STd/Jnk < M, for some M € R. From Remark 6.5
we obtain

e, (C) 1
0=1 > —1 i, (C)-
W Trdpn, = 21 R

In particular, (pn,, )r converges on cylinders to the zero measure. Lemma 6.8 implies
that limy_, o STdunk = o0, which contradicts the choice of the sequence (ng)g. O

Lemma 6.10. Let 7 € R and (vy)n, v invariant probability measures for the sus-
pension flow. Define p, = ¥(v,) and p = ¥(v). Then the following are equivalent:

(a) The sequence (vy)n converges on cylinders to A\v, where v € M(X,0,7) and

A€ (0,1].
(b) The sequence (fin)n converges to u in the weak* topology and
. Srdu B
nh_r)rgo Trdin A€ (0,1].

Proof. We first prove that (b) implies (a). If (i), converges in the weak* topol-
ogy to p, then lim, o pn(C) = p(C), for every cylinder C. It follows from the
hypothesis on A that

i A (C) _\ #(O)

n—0m0 Srd‘un STd,u

Remark 6.5 implies that (v,,), converges on cylinders to Av.

Now suppose that (v,), converges on cylinders to Av. It follows from Lemma
6.9 and the assumption that A > 0 that (§{7du,), is a bounded sequence. After
passing to a subsequence we can assume that (§7du,), is convergent. Let L € R
be such that lim,_, §7dp, = L. Remark 6.5 implies that

. AL
nlglgc pin(C) = STT#M(CL

for every cylinder C. We conclude that (u,, ), converges on cylinders to pg := Si—gﬂ L.

Observe that for sufficiently large n we have {7du,, < (L + 1). Lemma 6.8 implies
that po is a probability measure and that (p,), converges in the weak* topology
for yu9. Since y is a probability measure we conclude that AL = {7dyu, and therefore
1o = p. This argument shows that every subsequence of our initial sequence (g, )n
has a sub-subsequence converging to p. This readily implies that the whole sequence

converges to p, and that lim,, 4 SSTTdCLM =\ 0
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Our next result should be compared with Lemma 4.16. As mentioned in the
introduction, this is a necessary ingredient to prove that M1 (3, o, 7) is the Poulsen
simplex.

Lemma 6.11. If 7 € R then there exists a sequence of periodic measures (Vp,)n, C
M(Z,0,7) that converges on cylinders to the zero measure.

Proof. We will separate our analysis into two cases.

Case 1 (assume (X,0) satisfies the F—property): By Lemma 4.16 there exists
a sequence of periodic measures (i), which converges on cylinders to the zero
measure. Observe that every periodic measure belong to M., in particular ¢(u,,) €
M(X,0,7). Now, by Lemma 6.8 we conclude that lim,,_,o § 7dpu, = co. It follows
from Lemma 6.9 that the sequence (¢(un)), converges to the zero measure.

Case 2 (assume (3,0) does not satisfies the F—property): In this case there
exists an element a in the alphabet, [ € N, and a sequence (py, ), of distinct periodic
points of length [ such that p, € [a]. The periodic measure associated to p,, is
denoted by n,. Since 7 € R, for N € R there exists ny such that for n > ny we
have S;7(p,) > N. Here S;7 is the Birkhoff sum of 7 of length [. In particular
§7dn, = $S:7(pn) = N/I. This implies that lim, . § 7dn, = . The result then
follows from Lemma 6.9. O

Recall that the set L(X) was introduced in Definition 4.4. We will now prove
a compactness result similar to Proposition 4.11. The proof of Proposition 6.12 is
significantly simpler than the one of Proposition 4.11; it would be interesting if this
result can be generalized to a larger class of potentials.

Proposition 6.12. Assume that T € R. Let (un)n be a sequence of periodic mea-
sures on ¥. Suppose that (i), converges on cylinders to F' € L(X), and that there
ezists M € R such that {tdp, < M, for alln € N. Then F extends to an invariant
probability measure.

Proof. We will follow the strategy of the proof of Proposition 4.11. It is enough to

prove that
Jim, Jim o (U CS) =

s>k

where C = [ag...a;n—1] is a cylinder. Let p, € X be a periodic point of period r,
and p,, be the periodic measure of associated to the point p,. It is important to
observe that

i <U [S]) > fin (U Cs) : (6.2)
s>k s=k
Indeed, the probability measure p,, is equidistributed on the set
{Pn,0(Pn), - 0™ " (pn)}-

Observe that o*(p,,) € Cs, implies that a*+™(p,,) € [s], from where inequality (6.2)
follows. Since §7du, < M, we obtain that

STdMn M
< < ’
e (U [S]> infz::mZk T(.’E) infm:xl?k T(LC)

s>k
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but this immediately implies that

M
lim lm p, (U [s]) < lim sup -

k—00 n—00 Sk k—o0 lnfac::clzk' 7—(-77)

Since 7 € R we obtain that the right hand side in the last inequality is zero. Finally
use inequality (6.2) to conclude that

i Yy g (U CS) -0
s>k
As in the proof of Proposition 4.11 we have that F' extends to a measure on X.
Lemma 6.8 implies that F' is a probability measure. The invariance follows from
Lemma 4.1. (]

Proposition 6.12 states that, assuming an integrability condition, limits of peri-
odic measures are invariant probability measures. It is then of particular importance
to know wether is possible to approximate a sequence of invariant measures (i, )n
by periodic measures such that the assumption sup,, § 7du, < oo still remains true
for the sequence of periodic measures. Proposition 6.14 address this question. In
the proof of Proposition 6.14 we will need to approximate a measure in M (%, 0)
by a convex combination of finitely many ergodic probability measures. This result
is classical in the compact case: the space of invariant probability measures is a
compact convex set, and therefore the result follows from the Krein-Milman theo-
rem. In lack of a good reference we provide a proof of this result that avoids the
Krein-Milman theorem.

Lemma 6.13. Let u € M(Z,0) and (fi)7 be real-valued functions in L'(u).
Given & > 0, there exists 1 € M(X,0) that is a convexr combination of finitely
many ergodic probability measures which satisfies

| it [ gt
Proof. Let p = § pydm(z) be the ergodic decomposition of p, in particular,

| pau= | (f fkdux) dm(z),

for k € {0, ...,n}. By ergodic decomposition, the measure p,, is ergodic for p-almost
every x € Y. We choose a measurable set S ¥ such that u(S) = 1 and p, is
ergodic for every z € S. Given z € S we define Fj(z) := § fydu,. Observe that
§ fedp = §g Frdp. By definition of the integral we know that

<eg,

for every i € {0,...,n}.

J Frdp = inf {J gdp : g is simple and g > Fk}
S S

= sup {J gdu : g is simple and g < Fk} .
s
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This immediately implies that there exists a measurable partition Uy = { Ul(k) s ey Uzgf)}
of S, such that

J Frdy — e < i ( inf Fk(l')> ,U'(Ui(k))
s

i=1 wEU(k)

i
Pk

< Z sup Fy(z) M(Ui(k)) < J Frpdp+¢
i=1 \zeUM s

If P and Q are partitions then P A Q denotes the common refinement of P and
Q. That is, Ae PAQif A= P, n @, where P, € P and (); € Q. Consider the
partition U = A'_,U; of S, and write Y = {Uy, ..., Uy}. Choose a point z; € U;, for
every i € {1,...,q}. Note that

q
J de,u—s < Z Fk(ml),u(UZ) < J de/i-i-&?,
s = s

for every k € {0, ...,n}. We conclude that

Jfkdu - zq: 1(Us) Jfk:d,uzi

=1

<e,

for every k € {0, ...,n}. Finally define 1 = >0, p(U;) pis, - O

We will now prove a refinement of Theorem 3.8. As mentioned before, this is an
important ingredient to increase the applicability of Proposition 6.12.

Proposition 6.14. Let 7 be a uniformly continuous function such that vars(7) is
finite. For every p € M, there exists a sequence of periodic measures (fip)n that
converges in the weak™ topology to pu and such that lim, o § 7du, = { rdu.

Proof. In virtue of Lemma 6.13 it is possible to find a sequence (uy,),, of measures,
each a convex combination of finitely many ergodic probability measures, satisfying
A, p) < %, and such that lim,_,o § 7dp, = {7dp. In particular, it is enough to
prove that the result holds for measures which are a finite convex combination of
ergodic measures. We can moreover assume that the weights in the convex combi-
nation are rational numbers. Thus, from now on we assume that p = % Z;V=1 i
where each p; is ergodic.

Let Fo = {f1,-.., fi} < Cp(X) be a collection of bounded uniformly continuous
functions on ¥ and define F := Fy u {r}. By assumption each f € F is uniformly
continuous. In particular, given € > 0, there exists Ny = Ny(e) such that var, (f) <
$, for every f e F and n > Ny. Define Cp := maxscr, maxzex | ().

Choose M such that p;(Kp) > 9/10, for every j € {1,...,N}, where Ky =
Ui\il[s] By transitivity of (3, 0) there exists a number L such that every pair of
numbers in {1, ..., M} can be connected with an admissible word of length at most
L. For each pair (a,b) € {1,..., M}?> we choose a point p,; such that p,; € [a] and
oc@b)=1(p, ;) € [b], where c(a,b) < L. Recall that S, 7(x) denotes the Birkhoff
sum of length n of the point 2. Set C1 = maxqy p [Se(a,p)7(Pa,b)|- Define

1 m—1 .
As = {me D ‘m > flo'x) —ffduj
=0

<Z, foreveryfe]—'andm)s}.
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It follows from Birkhoff ergodic theorem that j;(Aj5.) — 1 as s — o0. Choose
so € N such that p;(A3%) > 9/10, for every j € {1,...,N}. We assume that so
is sufficiently large (relative to our constants Cy, C1, Ny and L) to be determined
later.

Observe that 1;(A5, N Ky no™(Ku)) > 1. Pick a point z; € A N Ky
0% (Kps). We will construct a periodic point xo out of the sequence (x])évzl Let
y; be the admissible word coming from the first (sg + 1) coordinates of z;. Observe
that the first and last letters of y; are in {1,...,M}. We construct an admissible
word of the form y = y1wiyaws...ynWnN, where w; are admissible words of length
less or equal to L that connects y; with y;.q1 (where we consider yni1 = y1).
‘We will moreover assume that the admissible word wj is the same one we used to
construct the point p, s, for the corresponding a and b. In this case I(y;) = c(a, b)
and the point associated to wj is denoted by p; € (pap)a,p. Then define z = (yy...).
We claim that the periodic measure associated to z, say pu,, belongs to the set

| s | sau

Our construction ensures the following inequalities:
(a) |SSO—Nof(x) - Sso—Nof(x1)| < (80 - NO)UarNof < (50 - N0)5/47 for every
ferF.
(b) [Sngti(ya) f (@0 N0x) = Sy igya) f(o%Nox)| < 2(No +U(y1))Co < 2(No +
L)Cy, for every f € Fy.
(c) |Sn,T(o%0Nog) — Sy, m(a%0~Nozy)| < Novara (7).
(d) [Siyy)T(0%2) = Syyy)7(P1)| < U(y1)vara(7) < Lvars(7).
We can use the last inequality to obtain that

|Siy)T(0%°x)| < Lvary(t) + Ch.

0= {yeM(E,o):

<eg, for everyfe]:}.

Combining these inequalities we obtain that
1
|SSO+l(y1)T(x) — S5, 7(x1)] < Z(SO — No)e + Novars(1) + Lvare(1) + Cq,
and that
1
[Sso+1ty2) (%) = Ssoiia) F(@1)] < 7 (s0 = NoJe + 2(No + L)Co,
where f € Fp. Similar inequalities can be obtained when comparing the value of
our function f at o k=1)s0+ X2} {31 (z) and at zj, where f € F. Using the triangle
inequality and the definition of A%, we can estimate | § fdpg — Z;V=1 § fdu;|, in an
effective way. By taking sg large enough (in terms of our constants Cy, C1, Ny
and L) we can ensure that u, € 2. We leave the details to the reader. We have
now proved that the result holds for convex combinations of ergodic measures, and
as explained at the beginning of the proof, the general result follows from Lemma
6.13. 0
Corollary 6.15. Assume that T € R. Then the space of ergodic measures M¢(%, o, T)
is weak™ dense in M(X, 0, 7).

Proof. Fix v € M(X,0,7). We will prove that v can be approximated in the
topology of convergence on cylinders by ergodic measures. Let u = 1(v). By
Proposition 6.14 we can find a sequence of periodic measures (pn)n, < M(2,0)
converging to p in the weak* topology and such that lim, o § 7du, = §7du. Set
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Vp = @(uy). Lemma 6.10 implies that (v,), converges in the cylinder topology to
v. In virtue of Lemma 6.7 we have that (v,), converges in the weak* topology to
v. Moreover, each v, is ergodic, since each ., is ergodic. This concludes the proof
of the corollary. O

We have finally all the ingredients to prove the main result of this section: the
compactness of M« (X, 0, 7). We already know that M<;(X,0,7) is a metrizable
topological space, it is enough to prove it is sequentially compact.

Theorem 6.16. Assume that 7 € R. Let (v,), be a sequence of invariant prob-
ability measures of the suspension flow. Then there exists a subsequence (Vn, )k
converging on cylinders to an invariant sub-probability measure v.

Proof. Let pi,, = ¥(vy,). If limsup,,_, ., §7dp, = oo, there exists a subsequence of
(vn)n that converges on cylinders to the zero measure. We will assume that

JTdﬂn < M,

for all n € N. By compactness of L(X) there exists a subsequence (i, )r that
converges on cylinders to F' € L(X). Maybe after passing to a subsequence we can
assume that limy_, Srdunk = L, for some L € R. We can now use Proposition 6.14
to obtain periodic measures 1, satisfying d(in,, ) <  and §7dne < (§ 7dpn, +1).
Note that limy_, d(ny, F) = 0 and §7dn, < (M +1), for all k € N. We can now use
Proposition 6.12 to conclude that F' extends to an invariant probability measure
that we denote by p. It follows that (pn, )i converges on cylinders to p and that
limy_, 0 STdunk = L. Finally use Lemma 6.10 to obtain that (v,, ) converges on

cylinders to Av, where v = p(u) and X = STLW. O

6.3. The space of flow invariant sub-probability measures is the Poulsen
simplex. In Section 5 we proved that M<;(3, o) is affine homeomorphic to the
Poulsen simplex if (X, o) has the F—property. In this section we prove an analogous
result for the suspension flow, that is, that M« (X, o, 7) is affine homeomorphic to
the Poulsen simplex, provided that 7 € R.

Theorem 6.17. Let 7 be a potential in R. The space M1 (2, 0,7) endowed with
the topology of convergence on cylinders is affine homeomorphic to the Poulsen
simplez.

Proof. In Theorem 6.16 we proved that the space M<1(X,0,7) is compact with
respect to the cylinder topology. In Lemma 6.6 we showed that it is a metrizable
space. Since the space is also a convex Choquet simplex (from the ergodic decompo-
sition), it suffices to prove that the set of extreme points is dense. Note that every
element of M¢(X,0,7) is of the form Ay, with A € [0,1] and v € M(Z,0,7). In
Lemma 6.11 we proved that there exists a sequence of flow invariant ergodic mea-
sures (), converging to the zero measure. Set 7, := A\v + (1 — )7y, and observe
that the sequence (7,), converges on cylinders to Av. It follows from Corollary
6.15 that the ergodic measures are dense in M(X, 0, 7). This allows us to approx-
imate (), by a sequence of ergodic measures that converges in cylinders to Av.
It follows from the main result of [LOS, Theorem 2.3] that M« (2,0, 7) is affine
homeomorphic to the Poulsen simplex. O

As in Section 5 we conclude that
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Theorem 6.18. Let (X, 0) be a transitive countable Markov shift and 7 € R. Then
M(X,0,7) is affinely homeomorphic to the Poulsen simplex minus a vertex and all
of its convex combinations.

Proof. Note that the set of extreme points of M<;(X,0,7) is the zero measure
together with the set of ergodic measures in M(X,0,7). The result now follows
from Theorem 6.17 together with the relation between weak* and cylinder topology
(see Lemma 6.7). O
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