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Abstract. It is well known that the space of invariant probability measures
for transitive sub-shifts of finite type is a Poulsen simplex. In this article we
prove that in the non-compact setting, for a large family of transitive count-
able Markov shifts, the space of invariant sub-probability measures is a Poulsen
simplex and that its extreme points are the ergodic invariant probability mea-
sures together with the zero measure. In particular we obtain that the space
of invariant probability measures is a Poulsen simplex minus a vertex and
the corresponding convex combinations. Our results apply to finite entropy
non-locally compact transitive countable Markov shifts and to every locally
compact transitive countable Markov shift. In order to prove these results
we introduce a topology on the space of measures that generalizes the vague
topology to a class of non-locally compact spaces, the topology of convergence
on cylinders. We also prove analogous results for suspension flows defined over
countable Markov shifts.

1. Introduction

Ever since the work of Parthasarathy [Par1] and Oxtoby [O] in the early 1960s
a great deal of attention has been paid to the problem of describing the space of
invariant probability measures of a dynamical system. Remarkable results have
been obtained relating the geometry of the space with the dynamical properties of
the system. A result by Downarowicz [D] states that for every Choquet simplex
K there exists a minimal sub-shift pX,T q for which the space of invariant proba-
bility measures MpX,T q is affinely homemorphic to K. In this article we will be
interested in a very special Choquet Simplex.

Definition 1.1. A metrizable convex compact Choquet simplex with at least two
points K is a Poulsen Simplex if its extreme points are dense in K.

The first example of such a simplex was constructed by Poulsen [Pou] in 1961.
It was later shown by Lindenstrauss, Olsen and Sternfeld [LOS, Theorem 2.3] that
the Poulsen simplex is unique up to affine homemorphism. This simplex enjoys
remarkable properties. For example, as proved in [LOS, Section 3], the set of
extreme points in the Poulsen simplex is path connected. The relation of this
simplex with dynamical systems directly follows from the seminal work of Sigmund
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[Si1], see also [Si2, Si3]. Indeed, if pΣ, σq is a transitive sub-shift of finite type then
MpΣ, σq is affinely homeomorphic to the Poulsen simplex. Note that the extreme
points in this setting correspond to the ergodic measures.

This article describes the space of invariant measures for transitive countable
Markov shifts. The major difference with previous work on the subject is that the
phase space is no longer compact and therefore the escape of mass phenomenon
has to be taken into account. Notions of convergence in the space of measures are
required to describe loss of mass. Indeed, the weak* topology preserves the total
mass of the space, thus it can not capture the escape of mass. For locally compact
spaces the space of invariant measures can be endowed with the vague topology;
in this context it is possible for mass to be lost. We introduce a new notion of
convergence in the space of measures, the so called topology of convergence on
cylinders, that generalizes the vague topology. This notion of convergence does not
require the underlying space to be locally compact.

In the non-compact setting the space of invariant probability measures is not
necessarily compact. The lack of compactness of the space of invariant probabil-
ity measures is a major difficulty in the development of the corresponding ergodic
theory: in many arguments it is natural to take limits of invariant measures and it
is important to know that the limiting object is indeed a measure. We stress that
this is a very subtle phenomenon, it could happen that for topologies that natu-
rally generalize the weak* topology the limit of a sequence of invariant probability
measures is not a countably additive measure. In this paper we will compactify
the space of invariant probability measures for a large family of countable Markov
shifts, including a wide range of non-locally compact shifts. As we will see, our
compactification is strongly related to the escape of mass phenomenon.

For completeness we will briefly describe the topology on the space of invariant
sub-probability measures we will focus on in this work. Let pΣ, σq be a transitive
countable Markov shift and Mď1pΣ, σq the space of σ-invariant sub-probability
measures on Σ (for precise definitions we refer the reader to Sections 2 and 3). We
say that pµnqn Ă Mď1pΣ, σq converges on cylinders to µ if

lim
nÑ8

µnpCq “ µpCq,
for every cylinder C Ă Σ. This notion of convergence induces a topology, the
topology of convergence on cylinders. We prove that this topology is metrizable
(see Proposition 3.15). For general facts about the topology of convergence on
cylinders we refer the reader to Section 3.3.

We consider a large class of countable Markov shifts that satisfy the so called
F´property (see Definition 4.9). This include locally compact and finite entropy
non-locally compact countable Markov shifts. The F´property essentially rules
out the possibility of having infinitely many periodic orbits of a given length that
intersect a fixed cylinder. One of the main results of this work is

Theorem 1.2. Let pΣ, σq be a transitive countable Markov shift satisfying the
F´property. Then the space of invariant sub-probability measures Mď1pΣ, σq en-
dowed with the topology of convergence on cylinders is affine homeomorphic to the
Poulsen simplex. In particular Mď1pΣ, σq is compact with respect to the topology
of convergence on cylinders.

The topology of convergence on cylinders restricted to MpΣ, σq coincides with
the weak* topology (see Lemma 3.17). Theorem 1.2 has the following corollary.
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Corollary 1.3. Let pΣ, σq be a transitive countable Markov shift satisfying the
F´property. Then the space of invariant probability measures MpΣ, σq endowed
with the weak* topology is affine homeomorphic to the Poulsen simplex minus a
vertex and all of its convex combinations.

In order to prove Theorem 1.2 we will need to prove three key properties: (1)
there exists a sequence of ergodic measures converging on cylinders to the zero
measure, (2) every sequence of periodic measures has an accumulation point (in
the topology of convergence on cylinders) which is a countably additive measure
and (3) the set of periodic measures is weak* dense in MpΣ, σq. While point (3)
is fairly standard and uses shadowing and closing properties of the shift, the other
two are more subtle. Indeed, a combinatorial assumption is required on pΣ, σq for
these properties to hold (hence the F-property assumption).

It worth pointing out that Theorem 1.2 is optimal for the topology of conver-
gence on cylinders. More precisely, if pΣ, σq does not satisfy the F´property, then
MpΣ, σq contains a sequence of periodic measures which converges on cylinders to
a finitely additive measure which is not countably additive (see Proposition 4.19).
In particular if we want to compactify MpΣ, σq we must give up the convergence
on all cylinders (which does not seem reasonable) or to modify the topology in a
more substantial way.

We also study suspension flows defined over countable Markov shifts. These
are continuous time dynamical systems defined over non-compact spaces. The
suspensions we consider are constructed over arbitrary countable Markov shifts
pΣ, σq and for roof functions τ : Σ Ñ R belonging to a class that we denote by R
(for precise definition we refer the reader to Section 6). If τ is bounded away from
zero there is a one–to–one correspondence between the space of invariant probability
measures for the flow, which we denote by MpΣ, σ, τq, and Mτ “ tµ P MpΣ, σq :ş
τdµ ă 8u. The space of sub-probability measures invariant by the suspension flow

is denoted by Mď1pΣ, σ, τq. In Section 6 we define a topology on Mď1pΣ, σ, τq,
the topology of convergence on cylinders for the suspension flow, that shares many
properties with the topology of convergence on cylinders on Mď1pΣ, σq.

The class of suspension flows that we study include a wide range of symbolic
models for geometric systems. For example, the symbolic model of the geodesic
flow over the modular surface satisfies all of our assumptions. In this context we
prove,

Theorem 1.4. Let pΣ, σq be a transitive countable Markov shift and τ P R. Then
the space of invariant sub-probability measures of the suspension flow Mď1pΣ, σ, τq,
endowed with the topology of convergence on cylinders for the suspension flow, is
affine homeomorphic to the Poulsen simplex. In particular Mď1pΣ, σ, τq is compact
with respect to the topology of convergence on cylinders.

Some countable Markov shifts without the F´property are particularly impor-
tant (for instance the full shift, or shifts with the BIP property [Sa2]), and we do
want to have some understanding on their spaces of invariant probability measure.
The work done in Section 6 and our auxiliary potential τ allows us to regain control
in this setting. Indeed, in this general context we are able to describe the set of
invariant probability measures for which the function τ is integrable (see Lemma
6.1 and Theorem 6.18).
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We stress that the compactifications constructed in this paper have several in-
teresting applications to the thermodynamic formalism of countable Markov shifts.
For instance, in joint work with M. Todd [ITV], we consider finite entropy count-
able Markov shifts pΣ, σq and study the behaviour of the measure theoretic entropy
of a sequence pµnqn Ă MpΣ, σq. By the results in this paper there exists a measure
µ P Mď1pΣ, σq and a sub-sequence of pµnqn which converges to µ in the cylinder
topology. This property is used to establish stability results for the measure of
maximal entropy, relate the escape of mass with the entropy of the system and to
prove upper-semi continuity of the entropy map. In the compact setting there is no
escape of mass and the properties of the entropy map and the measure of maximal
entropy are classical [Wa, Chapter 8], but in the non-compact case new ideas were
needed. We also mention that the results in [ITV] can be pushed even further to
include potentials, this is discussed in [V] by the second author.

Finally, we remark that over the last few years countable Markov shifts have been
used to code relevant parts of the dynamics for a wide range of dynamical systems.
For example, it was shown by Sarig [Sa2] that countable Markov partitions can
be constructed for positive entropy diffeomorphisims defined on compact surfaces.
The corresponding symbolic coding captures positive entropy measures. These
results have recently been used to prove that C8 surface diffeomoprhisms of positive
entropy have at most finitely many measures of maximal entropy [BCS]. In a
different direction, countable Markov partitions have been constructed for Sinai
and Bunimovich billiards, this has allowed for the proof of lower bounds on the
number of periodic orbits of a given period [LM]. Based on the work of Sarig,
countable Markov partitions have been constructed for large classes of dynamical
systems. Our results apply not only to all countable Markov shifts obtained as
symbolic codings of these systems, but also to several non-locally compact symbolic
models. For instance, symbolic codings of interval maps having a parabolic fixed
point [H, MP, Sa1] or loop systems [BBG].

Acknowledgements. We would like to thank Mike Todd for a wealth of relevant and
interesting comments on the subject of this article. This paper was initiated while
the second author was visiting the first author at Pontificia Universidad Católica
de Chile. The second author would like to thank the dynamics group at PUC for
making his visit very stimulating. He would also like to thank Richard Canary for
his invitation to participate of ‘Workshop on Groups, Geometry and Dynamics’
held in Universidad de la República, where an important part of this work was
preparated.

2. Countable Markov shifts

In this section we define the dynamical systems that will be studied throughout
the article. LetB be a transition matrix defined on the alphabet of natural numbers.
That is, the entries of the matrix B “ Bpi, jqNˆN are zeros and ones (with no row
and no column made entirely of zeros). The countable Markov shift pΣ, σq defined
by the matrix B is the set

Σ :“ tpxnqnPN : Bpxn, xn`1q “ 1 for every n P Nu ,
together with the shift map σ : Σ Ñ Σ defined by σpx1, x2, . . . q “ px2, x3, . . . q. For
pa1, . . . , anq P Nn, we define a cylinder set ra1 . . . ans of length n by

ra1 . . . ans :“ tx P Σ : xj “ aj for 1 ď j ď nu .
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We endow Σ with the topology generated by cylinder sets. This is a metrizable
non-compact space. Indeed, let d̃ : Σ ˆ Σ Ñ R be the function defined by

d̃px, yq :“

$
’&

’%

1 if x0 ‰ y0;

2´k if xi “ yi for i P t0, . . . , k ´ 1u and xk ‰ yk;

0 if x “ y.

(2.1)

The function d̃ is a metric and it generates the same topology as that of the cylinders
sets.

A countable Markov shift defined by the transition matrix B “ Bpi, jqNˆN is
locally compact if and only if for every i P N we have

ř8
j“1 Bpi, jq ă8 (see [Ki,

Observation 7.2.3]).
An admissible word is a word w “ a1...an, where ai P N and ra1, ..., ans is non-

empty. To emphasize the difference between admissible words and points in Σ we
use bold letters for admissible words.

Let ϕ : Σ Ñ R be a function. We define varnpϕq “ supx,y |ϕpxq ´ ϕpyq|, where
the supremum runs over points x and y satisfying d̃px, yq ď 2´n. Observe that a
function ϕ is uniformly continuous if and only if varnpϕq goes to zero as n goes to
infinity. A potential ϕ has summable variations if

ř8
k“2 varkpϕq is finite.

In the late 1960s Gurevich [Gu1, Gu2] introduced a suitable notion of entropy in
this setting. Note that since the space Σ is not compact the classical definition of
topological entropy obtained by means of pn, εq-separated sets (see [Wa, Chapter
7]) depends upon the metric. That is, two equivalent metrics can yield different
numbers. Since the entropy of an invariant measure depends only on the Borel
structure and not on the metric, this is a major problem if the entropy is to satisfy
a variational principle. Gurevich introduced the following notion of entropy:

hpσq :“ lim sup
nÑ8

1

n
log

ÿ

x:σnx“x

1raspxq,

where a P N is an arbitrary symbol and 1ras is the characteristic function of the
cylinder ras. Gurevich proved that this value is independent of the symbol a if pΣ, σq
is transitive and that the limit exists if pΣ, σq is topologically mixing. Moreover,
he also proved that this notion of entropy is the correct one in the sense that is
satisfies the variational principle. That is

hpσq “ sup thpµq : µ P MpΣ, σqu ,
where hpµq is the entropy of the invariant measure µ (see [Wa, Chapter 4]) and
MpΣ, σq is the space of invariant probability measures.

3. Topologies in the space of measures

In this section we recall definitions and properties of the weak* and the vague
topologies and define a new notion of convergence in the space of probability mea-
sures on Σ, namely the topology of convergence on cylinders. It is with respect
to these three topologies that we will describe the space of invariant probability
measures MpΣ, σq. It is worth emphasizing that the weak* topology does not al-
low escape of mass, but the vague topology and the topology of convergence on
cylinders do allow it.
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3.1. The weak* topology. Let pX, ρq be a metric space. We denote by CbpXq
the space bounded continuous function f : X Ñ R. We endow CbpXq with the
C0-topology. This is the topology induced by the norm }f} “ supxPX |fpxq|. It is
a standard fact that CbpXq is a Banach space. Denote by MpXq the set of Borel
probability measures on the metric space pX, ρq. Our first notion of convergence in
this set is the following,

Definition 3.1. A sequence of probability measures pµnqn Ă MpXq converges to
a measure µ in the weak* topology if for every f P CbpXq we have

lim
nÑ8

ż
fdµn “

ż
fdµ.

Remark 3.2. Note that in this notion of convergence we can replace the set of test
functions (bounded and continuous) by the space of bounded uniformly continuous
functions (see [B, 8.3.1 Remark]) or by the space of bounded Lipschitz functions
(see [Kl, Theorem 13.16 (ii)]). That is, if for every bounded uniformly continuous
(or bounded Lipschitz) function f : X Ñ R we have

lim
nÑ8

ż
fdµn “

ż
fdµ,

then the sequence pµnqn converges in the weak* topology to µ.

The weak* topology is the coarsest topology such that for every f P CbpXq the
map de µ Ñ ş

f dµ, with µ P MpXq, continuous. The following classical result
characterizes weak* convergence (see [Bi, Theorem 2.1]).

Proposition 3.3 (Portmanteau Theorem). Let pµnqn, µ be probability measures on
X. The following statements are equivalent.

(a) The sequence pµnqn converges to µ in the weak* topology.
(b) For every open set O Ă X, the following holds µpOq ď lim infnÑ8 µnpOq.
(c) For every closed set C Ă X, the following holds µpCq ě lim supnÑ8 µnpCq.
(d) For every set A Ă X such that µpBAq “ 0, the following holds µpAq “

limnÑ8 µnpAq.
A relevant feature of the weak* convergence is that there is no loss of mass since

the constant function equal to one belongs to CbpXq. That is,
Remark 3.4. If the sequence of probability measures pµnqn converges in the weak*
topology to µ then µ is also a probability measure.

Also note that if the space pX, ρq is compact then the space of Borel probability
measures, MpXq, is also compact with respect to the weak* topology (see [Wa,
Theorem 6.5]). An interesting fact is that if pX, ρq is separable metric space then
MpXq can be metrized as a separable metric space (see [Par2, Theorem 6.2]).
Actually, there exists an explicit metric that generates the weak* topology and for
which MpXq is separable if X is separable. This is the so called Prohorov metric
(see [Bi, pp.72-73]). Therefore, if X is a separable metric space then so is MpXq
despite the fact that the space CbpXq might not be separable. Actually, if pΣ, σq is
a non-compact countable Markov shift then CbpΣq is not separable, as below.

Remark 3.5. Let pΣ, σq be a countable (non-compact) Markov shift then CbpΣq is
not separable. Indeed, let pxnqn be a fixed sequence of elements of Σ with xn P rns,
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where rns :“ tpy1, y2, . . . q P Σ : y1 “ nu. Define the set

L :“ tϕ P CbpΣq : ϕpxnq “ 0 or ϕpxnq “ 1, for every n P Nu .
Note that L contains uncountably many elements. For every countable subset
C Ă CbpΣq there exists ϕ P L such that for every ψ P C we have

}ϕ ´ ψ} ě 1

2
,

hence CbpΣq is not separable.

Let T : pX, ρq Ñ pX, ρq be a continuous dynamical system defined on a metric
space. We denote by MpX,T q the space of T´invariant probability measures.
In the following lemma we collect relevant information regarding the structure of
MpX,T q.
Lemma 3.6. Let T : pX, ρq Ñ pX, ρq be a continuous dynamical system defined on
a metric space, then

(a) The space MpX,T q, as a subset of MpXq, is closed in the weak* topology
([Wa, Theorem 6.10]).

(b) If X is compact then so is MpX,T q with respect to the weak* topology (see
[Wa, Theorem 6.10]).

(c) The space MpX,T q is a convex set for which its extreme points are the
ergodic measures (see [Wa, Theorem 6.10]). It is actually a Choquet sim-
plex (each measure is represented in a unique way as a generalized convex
combination of the ergodic measures [Wa, p.153]).

Definition 3.7. Let T : pX, ρq Ñ pX, ρq be a continuous dynamical system defined
on a metric space. We denote by MepX,T q the set of ergodic T -invariant probabil-
ity measures. An ergodic measure µ P MepX,T q supported on a periodic orbit will
be called a periodic measure. Denote by MppX,T q the set of periodic measures.

The next result was obtained by Coudéne and Schapira [CS, Section 6] as a
consequence of shadowing and the Anosov closing Lemma.

Theorem 3.8. Let pΣ, σq be a transitive countable Markov shift then MppΣ, σq is
dense in MpΣ, σq with respect to the weak* topology.

3.2. The vague topology. Let pX, ρq be a locally compact metric space. Denote
by Mď1pXq the set of Borel non-negative measures on X such that µpXq ď 1.
The set of continuous functions of compact support, that is continuous functions
f : X Ñ R for which the closure of the set tx P X : fpxq ‰ 0u is compact, will
be denoted by CcpXq. Note that CcpXq Ă CbpXq. We will consider the following
notion of convergence.

Definition 3.9. A sequence pµnqn Ă Mď1pXq converges to µ P Mď1pXq in the
vague topology if for every f P CcpΣq we have

lim
nÑ8

ż
fdµn “

ż
fdµ.

The vague topology is the coarsest topology on Mď1pXq such that for every f
continuous and of compact support, the map µ Ñ ş

fdµ is continuous. We stress
that the total mass is not necessarily preserved in the vague topology. A sequence of
probability measures can converge in the vague topology to a non-negative measure



8 G. IOMMI AND A. VELOZO

of total mass less or equal to one. If X is compact then CcpXq “ CbpXq and
therefore the vague topology coincides with the weak* topology. We collect the
following results,

Remark 3.10. Let pX, ρq be a metric space. Note that the weak* topology extends
to Mď1pXq.

(a) If X is compact then Mď1pXq is compact with respect to the weak* topol-
ogy (see [Kl, Corollary 13.30]).

(b) If X is a locally compact separable metric space then Mď1pXq is compact
with respect to the vague topology (see [Kl, Corollary 13.31]) and metrizable
(see [Di, 13.4.2]).

(c) Let X be a locally compact separable metric space. The sequence pµnqn
converges vaguely to µ and limnÑ8 µnpXq “ µpXq if and only if pµnqn
converges in weak* topology to µ (see [Kl, Theorem 13.16]).

(d) Let X be a locally compact separable metric space. The sequence pµnqn
converges vaguely to µ and the sequence pµnqn is tight if and only if pµnqn
converges in weak* topology to µ (see [Kl, Theorem 13.35]).

Let T : pX, ρq Ñ pX, ρq be a continuous dynamical system defined on a metric
space. If pµnqn Ă MpX,T q is a sequence of T´invariant probability measures
that converges in the vague topology to a non zero measure µ, then the normalized
measure µp¨q{µpXq is a T´invariant probability. We call the measure µ an invariant
sub-probability and denote byMď1pX,T q the space of T´invariant sub-probability
measures. Observe that the zero measure belongs to Mď1pX,T q.
Lemma 3.11. Let T : pX, ρq Ñ pX, ρq be a continuous dynamical system defined
on a metric space, then

(a) The space MpX,T q is a closed subset of Mď1pX,T q in the weak* topology.
(b) If X is a locally compact separable metric space then the space Mď1pX,T q

is compact in the vague topology.

Proof. The first claim is a consequence of Lemma 3.6, while the second follows from
Remark 3.10. !

Proposition 3.12. Let T : pX, ρq Ñ pX, ρq be a continuous dynamical system
defined on a metric space. Then the space Mď1pX,T q is a convex set and its
extreme points are the ergodic measures and the zero measure.

Proof. The convexity of the space Mď1pX,T q is direct. Note that every invariant
sub-probability µ P Mď1pX,T q with 0 ă µpXq ă 1, is the convex combination of
a measure in MpX,T q and the zero measure. Also note that the zero measure is
not the convex combination of any set of positive measures. The result then follows
from Lemma 3.6. !

3.3. The topology of convergence on cylinders. Several relevant countable
Markov shifts are not locally compact. Therefore a good notion of convergence in
the space of sub-probabilities is required in this setting. The vague topology is of
no use in the non-locally compact setting since in this case the space CcpXq might
be empty, as below.

Remark 3.13. If Σ is a non-locally compact transitive countable Markov shift then
CcpΣq “ H. Indeed, if K Ă Σ is a compact set then it must have empty interior
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(see [Ki, Observation 7.2.3 (iv)]). Therefore K “ BK, that is, the compact set
equals its topological boundary. If f P CcpΣq then consider the open set

A :“ tx P Σ : fpxq ‰ 0u “ f´1 pR! t0uq .
Note that the support of f is K “ A, that is the closure of the set A. But since
f P CcpΣq the set K is compact. This means that the compact set K contains an
open set A, contradicting the fact that K “ BK. Therefore CcpΣq “ H.

We now define the notion of convergence–that generalizes the vague topology to
the non-locally compact setting–which is the main topic of this work.

Definition 3.14. Let pΣ, σq be a countable Markov shift and pµnqn, µ invariant
sub-probability measures. We say that a sequence pµnqn converges on cylinders to
µ if limnÑ8 µnpCq “ µpCq, for every cylinder C Ă Σ. The topology on Mď1pΣq
induced by this convergence is called the topology of convergence on cylinders.

We emphasize that this notion of convergence induces a topology because the
collection of cylinders is countable and it is a basis for the topology on Σ. For
brevity we will frequently say that pµnqn Ă Mď1pΣq converges on cylinders to µ if
the sequence converges in the topology of convergence on cylinders.

Proposition 3.15. The topology of convergence on cylinders on Mď1pΣq is metriz-
able.

Proof. Consider the metric

dpµ, νq “
ÿ

ně1

1

2n
|µpCnq ´ νpCnq|, (3.1)

where pCnqn is some enumeration of the cylinders on Σ. Note that dpµ, νq “ 0,
if and only if µ “ ν. Indeed, if dpµ, νq “ 0 then µpCq “ νpCq, for every cylinder
C. By the outer regularity of Borel measures on a metric space we conclude that
this is equivalent to say that µ “ ν. Symmetry is clear and the triangle inequality
follows directly from the triangle inequality in R. It is clear from the definition of d
that it induces the desired notion of convergence on Mď1pΣq, that is, it generates
the topology of convergence on cylinders. !

It worth pointing out that since CbpΣq is not separable we can not endow the
weak* topology with a metric like d.

Remark 3.16. Note that the topology of convergence on cylinders, like the vague
topology, allows for mass to escape. Indeed, let Σ be the full shift on N, which is
not locally compact. Denote by δn the atomic measure supported on the point n :“
pn, n, n, . . . q. Then the sequence pδnqn converges in the topology of convergence on
cylinders to the zero measure.

Despite Remark 3.16 the topology of convergence on cylinders is closely related
to the weak* topology. If there is no loss of mass both notions coincide.

Lemma 3.17. Let pΣ, σq be a countable Markov shift, µ and pµnqn be probability
measures on Σ. The following assertions are equivalent.

(a) The sequence pµnqn converges in the weak* topology to µ.
(b) The sequence pµnqn converges on cylinders to µ.
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Proof. First assume that pµnqn converges in the weak* topology to µ. Define f :“
1C P CbpΣq, where 1C is the characteristic function of a cylinder. The weak*
convergence implies that limnÑ8

ş
fdµn “ ş

fdµ, which is equivalent to say that

lim
nÑ8

µnpCq “ µpCq.

Since the cylinder C was chosen arbitrarily we conclude that pµnqn converges on
cylinders to µ. Now assume that pµnqn converges on cylinders to µ. Observe
that an open set O can be uniquely written as a countable union of cylinders, say
O “ Ť

kě1 Ck. Therefore

lim inf
nÑ8

µnpOq ě lim inf
nÑ8

µn

˜
Mď

k“1

Ck

¸
“ µ

˜
Mď

k“1

Ck

¸
,

for every M . We conclude that

lim inf
nÑ8

µnpOq ě µpOq.

Proposition 3.3 implies that pµnqn converges in the weak* topology to µ. !
We will now prove that the topology of convergence on cylinders generalizes the

vague topology. More precisely, on locally compact countable Markov shifts both
topologies coincide.

Lemma 3.18. Let pΣ, σq be a locally compact countable Markov shift and µ, pµnqn P
Mď1pΣq. The following assertions are equivalent.

(a) The sequence pµnqn converges in the vague topology to µ.
(b) The sequence pµnqn converges on cylinders to µ.

Proof. First note that if Σ is locally compact then every cylinder is a compact set
(see [Ki, Observation 7.2.3]). Assume that pµnqn converges in the vague topology
to µ. Let C P Σ be a cylinder set, then the characteristic function of C, denoted
by 1C belongs to CcpΣq. Thus,

lim
nÑ8

ż
1Cdµn “

ż
1Cdµ.

Therefore, the sequence pµnqn converges on cylinders to µ.
Suppose now that pµnqn converges on cylinders to µ and let f P CcpΣq. We

will prove that limnÑ8
ş
fdµn “ ş

fdµ. The function f is uniformly continuous,
in particular for every ε ą 0 there exists n “ npεq P N such that varnpfq ď ε.
Since the support of f is a compact set there exists M P N such that it is contained
in

ŤM
i“1ris. By the locally compactness of Σ there are finitely many (non-empty)

cylinders of length n, that we denote by pCiqqi“1, intersecting
ŤM

i“1ris. Note that if
a cylinder of length n intersects a cylinder of length one then it is contained in it,
therefore

Ťq
i“1 Ci “ ŤM

i“1ris. We now define a locally constant function f̃ : Σ Ñ R
that approximates f . For every i P t1, . . . , qu choose a point xi P Ci and let
f̃ : Σ Ñ R be the function defined by

f̃pxq :“
#
fpxiq if x P Ci, for i P t1, . . . , qu;
0 if x R Ťq

i“1 Ci.

By construction the function f̃ is locally constant depending only on the first n
coordinates, thus varnpf̃q “ 0. Moreover, it is zero on the complement of the
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set
ŤM

i“1ris. In particular f̃ “ řq
i“1 ai1Ci , for some sequence of real numbers

paiqqi“1. By the definition of the topology of convergence on cylinders we know that
limmÑ8

ş
f̃dµm “ ş

f̃dµ. Moreover, it follows from our construction that

}f ´ f̃} “ sup
xPΣ

|fpxq ´ f̃ | ď ε.

The construction of f̃ can be made for every ε ą 0. In particular we can construct
a sequence pf̃kqk such that }f ´ f̃k} ď 1{k, and limmÑ8 f̃kdµm “ ş

f̃kdµ. This
immediately implies that limmÑ8

ş
fdµm “ ş

fdµ, which completes the proof. !

3.4. The space of test functions for the topology of convergence on cylin-
ders. The space of test functions for the weak* topology is CbpΣq. Similarly, the
space of test functions for the vague topology is CcpΣq. For duality reasons it is
actually convenient to have a Banach space as the space of test functions. For the
vague topology this is not a serious issue, we can simply consider the closure of
CcpΣq in CbpΣq; this gives us the space C0pΣq of functions that vanish at infinity.
More precisely, a function f P C0pΣq if it is a continuous functions such that for
every ε ą 0 there exists a compact set K Ă Σ such that for every x P Σ ! K we
have |fpxq| ă ε.

It is a natural question to determine what is the space of test functions for the
topology of convergence on cylinders. More precisely, determine a Banach space V
such that pµnqn converges on cylinders to µ if and only if limnÑ8

ş
fdµn “ ş

fdµ for
every f P V . From the definition of the topology of convergence on cylinders (Def-
inition 3.14) it is clear that the space V should contain the characteristic function
of a cylinder and finite linear combination of those. Define

H :“
#
f P CbpΣq : f “

nÿ

i“1

ai1Ci , where ai P R and Ci is a cylinder for each i

+
.

As with the vague topology, our space of test functions will be the closure of H
in CbpΣq, that we denote by H̄. The following is direct from the definition of the
topology of convergence on cylinders.

Lemma 3.19. Let pΣ, σq be a countable Markov shift and µ, pµnqn Ă Mď1pΣq then
pµnqn converges on cylinders to the measure µ if and only if for every f P H̄ we
have

lim
nÑ8

ż
fdµn “

ż
fdµ.

In what follows we will characterize the space H̄, in order to do so we will require
the following notions.

Definition 3.20. Let pΣ, σq be a countable Markov shift and f : Σ Ñ R a function.
If C is a cylinder of length m, denote by

Cpě nq :“
#
x P C : σmpxq P

ď

kěn

rks
+
.

For a non-empty set A Ă Σ we define

varApfq :“ sup t|fpxq ´ fpyq| : px, yq P A ˆ Au .
We declare varApfq “ 0 if A is the empty set.
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Lemma 3.21. A function f P CbpΣq belongs to H̄ if and only if the following three
conditions hold:

(a) f is uniformly continuous.
(b) limnÑ8 supxPrns |fpxq| “ 0.

(c) limnÑ8 varCpěnqpfq “ 0, for every cylinder C Ă Σ.

Moreover, if Σ is locally compact, then H̄ coincides with C0pΣq, the space of func-
tions that vanish at infinity.

Proof. Denote by H0 the space of bounded functions satisfying conditions (a), (b)
and (c). The space H0 is a closed subset of CbpΣq. The inclusion H Ă H0 follows
directly from the definition of H. Since H0 is closed we obtain that H̄ Ă H0.

We will now prove that H0 Ă H̄. Fix f P H0 and ε ą 0. We will construct a
function g P H such that }f ´ g} ă ε. This would imply that f P H̄.

Since f is uniformly continuous, there exists q P N such that varqpfq ă ε. Let
n1 P N be such that supxPrms |fpxq| ă ε, whenever m ą n1. Choose n2 P N
such that varrispěmqpfq ă ε, whenever i P t1, ..., n1u and m ą n2. Similarly,
choose n3 P N such that varrijspěmqpfq ă ε, whenever pi, jq P ś2

s“1t1, ..., nsu and
m ą n3. Inductively, we obtain a sequence tn1, ..., nq, nq`1u such that for every

k P t1, ..., qu we have varri1,...,ikspěmqpfq ă ε, whenever pi1, ..., ikq P śk
s“1t1, ..., nsu

and m ą nk`1.
Let f˚ P H0 and C a non-empty cylinder of length q. We will define a number

that depends on f˚ and C, which we denote by lf˚ pCq, as follows. Let us first
assume that Cpě nq “ H, for some n P N. In this case we define lf˚ pCq “ 0.
Now assume there exists a strictly increasing sequence pnkqk Ă N and points xk P
C X σ´qrnks. In this case we define lf˚ pCq :“ limkÑ8 f˚pxkq. It follows from
condition (c) that lf˚ pCq is well defined: it is independent of the sequences pnkqk
and pxkqk.

A point pa1, ..., akq P śk
s“1t1, ..., nsu defines the cylinder ra1, ..., aks. Collect

all the non-empty cylinders that arise in this way and call this set Ωk. Define
Ω “ Ťq

k“1 Ωk.
Let us first prove the result when lf pCq “ 0 holds for every C P Ω. By our choice

of tn1, ..., nq`1u and the assumption lf pCq “ 0, we know that for every k P t1, ..., qu
we have

sup
xPri1,...,ikspěmq

|fpxq| ă ε, (3.2)

whenever pi1, ..., ikq P śk
s“1t1, ..., nsu, and m ą nk`1 (for consistency define the

supremum over the empty set as zero). For every C P Ωq choose a point xC P C.
Define g :“ ř

CPΩq
fpxCq1C . Observe that if x P Ť

CPΩq
C, then |fpxq ´ gpxq| ă ε

(recall that varqpfq ă ε). If x does not belong to
Ť

CPΩq
C, then x belongs to a

cylinder of the form ri1, ..., ik, bs, where pi1, ..., ikq P śk
s“1t1, ..., nsu and b ą nk`1

(if k “ 0, then x P rbs where b ą n1q. By (3.2) and our choice of n1 we obtain that
|fpxq| ă ε. We therefore have }f ´ g} ă ε.

We will now explain how to reduce the general case to the situation where
lf pCq “ 0 holds for every C P Ω.

Define h1 :“ ř
CPΩ1

lf pCq1C and f1 :“ f ´ h1. We claim that lf1pCq “ 0, for
every C P Ω1. First suppose that there exists n such that Cpě nq “ H. In this
case, by definition, we have that lf1pCq “ 0. It remains to consider the non-trivial
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case in the definition of lf1pCq. Let pnkqk Ă N be a strictly increasing sequence and
pxkqk points in Σ such that xk P C X σ´1rnks. Then

lf1pCq “ lim
kÑ8

f1pxkq “ lim
kÑ8

pfpxkq ´ h1pxkqq “ lf pCq ´ lim
kÑ8

h1pxkq.

Since h1 “ ř
CPΩ1

lf pCq1C , we know that h1pxkq “ lf pCq (observe that all cylinders
in Ω1 have length 1). In particular lf1pCq “ 0.

Now define h2 :“ ř
CPΩ2

lf1pCq1C , and f2 :“ f1 ´h2. We claim that lf2pCq “ 0,
for every C P Ω1 Y Ω2. As before, first suppose that there exists n such that
Cpě nq “ H. In this case, by definition, we have that lf2pCq “ 0. It remains to
consider the non-trivial case in the definition of lf2pCq. Let C1 P Ω1 and C2 P Ω2.
Choose a strictly increasing sequence pnkqk Ă N and points pxkqk in Σ such that
xk P C2 X σ´2rnks. Then

lf2pC2q “ lim
kÑ8

f2pxkq “ lim
kÑ8

pf1pxkq ´ h2pxkqq “ lf1pC2q ´ lim
kÑ8

h2pxkq.

As before h2pxkq “ lf1pC2q, because xk P C2 Xσ´2rks. We conclude that lf2pC2q “
0. Similarly, choose sequences pmkqk Ă N and pykqk Ă Σ such that yk P C1 X
σ´1rmks, then

lf2pC1q “ lim
kÑ8

f2pykq “ lim
kÑ8

pf1pykq ´ h2pykqq “ lf1pC1q ´ lim
kÑ8

h2pykq.

Since h2 is a finite linear combination of indicators of cylinders of length 2 we obtain
that limkÑ8 h2pykq “ 0. By construction we have that lf1pC1q “ 0. We conclude
that lf2pCq “ 0, for every C P Ω1 Y Ω2.

Continue this process and define phkqqk“1 and pfkqqk“1 such that fk “ fk´1 ´ hk,
for every k P t1, ..., qu (where we set f0 “ f). By construction lfkpCq “ 0 for every

cylinder C P Ťk
i“1 Ωi. In particular lfq pCq “ 0, for every cylinder C P Ω. Finally,

observe that fq “ f ´ řq
k“1 hk. Since h :“ řq

k“1 hk is a function in H, it is enough
to approximate fq (we can add back the function h afterwards, H is a vector space).

We will now assume that Σ is locally compact. Since Σ is locally compact the set
Cpě mq is empty for large enough m. In particular condition (c) is always satisfied.
By definition a function f P CbpΣq belongs to C0pΣq if and only if condition (b)
holds. In particular condition (b) implies condition (a). Therefore H̄ coincides with
C0pΣq.

!

By abuse of notation we denote by C0pΣq the space of test functions for the
topology of convergence on cylinders; this is reasonable because H̄ “ C0pΣq in
the locally compact case. We say that f vanishes at infinity if f P C0pΣq. To
summarize, a function f P CbpΣq vanishes at infinity if it satisfies conditions (a),
(b) and (c). It follows from the discussion above that the Banach space C0pΣq is
the space of test functions for the topology of convergence on cylinders. In other
words, the map µ ÞÑ ş

fdµ is continuous in Mď1pΣ, σq, whenever f P C0pΣq.

4. The space of invariant sub-probability measures is compact

We already noticed in Lemma 3.11 that if pΣ, σq is a locally compact transitive
countable Markov shift the space of invariant sub-probability measures Mď1pΣ, σq
is compact with respect to the vague topology. It is a consequence of Lemma
3.18 that Mď1pΣ, σq is also compact with respect to the topology of convergence
on cylinders. In this section we prove that the space Mď1pΣ, σq is compact with
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respect to the topology of convergence on cylinders for a larger class of transitive
countable Markov shifts, that is, for countable Markov shifts with the F´property
(see Definition 4.9). Our results are also sharp: if pΣ, σq does not satisfy the
F´property, then there are sequences of periodic measures that converge to a
finitely additive measure that is not countably additive (see Proposition 4.19). Our
next result states that invariance is preserved under limits provided the limiting
object is a countably additive measure.

Lemma 4.1. Let pΣ, σq be a countable Markov shift. Let pµnqn be a sequence of
invariant probability measures converging on cylinders to a sub-probability measure
µ. Then µ is an invariant measure.

Proof. The measure µ is invariant if it is equal to σ˚µ :“ µpσ´1q. Note that, in
order to prove the invariance, it is enough to prove that σ˚µpDq “ µpDq, for every
cylinder D. Observe that if D is a cylinder then σ´1D “ Ť

iě1 Di, where pDiqi
is a finite or countable collection of cylinders. Since µn is invariant we have that
µnpDq “ µnpσ´1Dq. If σ´1D “ Ťm

i“1 Di is a finite union of cylinders we obtain
that

µpDq “ lim
nÑ8

µnpDq “ lim
nÑ8

µnpσ´1Dq “ lim
nÑ8

µn

˜
mď

i“1

Di

¸
“ µpσ´1Dq.

If σ´1D is union of infinitely many cylinders we have

µpDq “ lim
nÑ8

µnpDq “ lim
nÑ8

µnpσ´1Dq ě lim
nÑ8

µn

˜
Mď

i“1

Di

¸
“ µ

˜
Mď

i“1

Di

¸
,

for every M P N. We conclude that µpDq ě µpσ´1Dq. We therefore proved
that for every cylinder D we have µpDq ě µpσ´1Dq. Suppose D is a cylinder of
length s and enumerate all cylinders of length s by pEkqk with E1 “ D. Since
µpEkq ě µpσ´1Ekq, for every k P N, we obtain

µ

˜
ď

kě1

Ek

¸
ě µ

˜
ď

kě1

σ´1Ek

¸
. (4.1)

Observe that pEkqk and pσ´1Ekqk are partitions of Σ, in particular Σ “ Ť
kě1 Ek “Ť

kě1 σ
´1Ek. This implies that (4.1) is an equality, therefore µpEkq “ µpσ´1Ekq,

for every k P N. In particular we obtained that µpDq “ µpσ´1Dq, as desired. !
Remark 4.2. Recall that the periodic measures are dense inMpΣ, σq with respect to
the weak* topology (see Theorem 3.8). It is a consequence of Lemma 3.17 that the
same holds for the topology of convergence on cylinders. In other words, given an
invariant probability measure µ, there exists a sequence pµnqn of periodic measures
such that limnÑ8 dpµ, µnq “ 0.

Remark 4.3. Recall that every element of Mď1pΣ, σq is of the form λµ, where
µ P MpΣ, σq and λ P r0, 1s.

In order to study the space Mď1pΣ, σq we will model it with a space of functions.

Definition 4.4. Denote by FinCylpΣq the collection of non-empty finite unions
of cylinders in Σ. Let MpΣq be the space of functions F : FinCylpΣq Ñ r0, 1s and
LpΣq Ă MpΣq the space of functions satisfying the following conditions.

(a) If C Ă C 1 are cylinders, then F pCq ď F pC 1q.
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(b) F pŤn
k“1 Ckq “ řn

k“1 F pCkq, for every (finite) collection of disjoint cylinders
pCkqk.

Remark 4.5. Observe that FinCylpΣq is a countable set. Fix a bijection between
FinCylpΣq and N. This bijection allow us to identify MpΣq with r0, 1sN. From
now on we consider LpΣq as a subset of r0, 1sN. We endow MpΣq with the product
topology. Observe that pRnqn Ă MpΣq converges to R P MpΣq if and only if

lim
nÑ8

RnpDq “ RpDq,
for every D P FinCylpΣq.
Remark 4.6. Observe that the metric d, see equation (3.1), also defines a metric
on LpΣq. Indeed, if F,G P LpΣq then

dpF,Gq “
ÿ

ně1

1

2n
|F pCnq ´ GpCnq|, (4.2)

where pCnqn is some enumeration of the cylinders on Σ, is a metric on LpΣq. It is
important to observe that the topology induced by d on LpΣq is compatible with
the product topology on MpΣq “ r0, 1sN. Indeed, limnÑ8 dpFn, F q “ 0, if and only
if limnÑ8 FnpCq “ F pCq, for every cylinder C. By condition (b) in the definition
of LpΣq this is equivalent to limnÑ8 FnpDq “ F pDq, for every D P FinCylpΣq. In
other words, there exists a continuous injective map from the set LpΣq, endowed
with the topology generated by the metric d, into the space r0, 1sN endowed with
the product topology.

Lemma 4.7. The set LpΣq is compact with respect to the topology induced by d.

Proof. We will first prove that LpΣq is a closed subset of MpΣq. Let pFnqn be
a sequence of functions in LpΣq that converges to F P MpΣq. Let C and D be
cylinders such that C Ă D. Then FnpCq ď FnpDq, for every n P N. We conclude
that

F pCq “ lim
nÑ8

FnpCq ď lim
nÑ8

FnpDq “ F pDq.
Similarly, if pCkqmk“1 is a finite collection of disjoint cylinders we have that

F

˜
mď

k“1

Ck

¸
“ lim

nÑ8
Fn

˜
mď

k“1

Ck

¸
“ lim

nÑ8

mÿ

k“1

FnpCkq “
mÿ

k“1

F pCkq.

We conclude that F P LpΣq. It follows that LpΣq is a closed subset of MpΣq. Since
r0, 1sN is compact, by virtue of Remark 4.6 we have that LpΣq is compact with the
topology induced by d. !
Remark 4.8. Observe that every sub-probability measure on Σ can be identified
with a unique function F P LpΣq. More precisely, given µ P Mď1pΣ, σq we define
Fµ P LpΣq by FµpDq :“ µpDq, for every D P FinCylpΣq. The map µ ÞÑ Fµ

defines a continuous embedding MpΣ, σq ãÑ LpΣq, when we endow MpΣ, σq with
the topology of convergence on cylinders. We say that a sequence pµnqn Ă MpΣ, σq
converges to F P LpΣq if pFµnqn Ă LpΣq converges to F .

In light of Remark 4.8, in order to prove that the space of invariant sub-probability
measures is compact with respect to the cylinder topology it suffices to prove that
MpΣ, σq Ă LpΣq consist of invariant sub-probability measures. At this point we
will make a further assumption on the countable Markov shifts considered.
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Definition 4.9. A countable Markov shift pΣ, σq is said to satisfy the F´property
if for every element of the alphabet i and natural number n, there are only finitely
many admissible words of length n starting and ending at i.

Remark 4.10. Every countable Markov shift pΣ, σq of finite topological entropy and
every locally compact countable Markov shift satisfies the F´property. There also
exists infinite entropy non-locally compact countable Markov shifts satisfying the
F´property. Indeed, let panqn be a sequence of positive integers such that

lim
nÑ8

1

n
log an “ 8.

Consider the countable Markov shift defined by a graph made of an simple loops of
length n which are based at a common vertex and otherwise do not intersect. This
system has the desired properties.

Proposition 4.11. Let pΣ, σq be a transitive countable Markov shift satisfying the
F´property. If pµnqn is a sequence of periodic measures converging to a function
F P LpΣq, then F extends to an invariant sub-probability measure.

Proof. We start by proving that F extends to a measure. Fix a cylinder C “
ra1, ..., ams, and denote by Ck the cylinder ra1, ..., am, ks. We will need the following
lemma.

Lemma 4.12.

F pCq “
ÿ

kě1

F pCkq. (4.3)

We assume that F pCq ą 0, otherwise there is nothing to prove (both left and
right hand side would be zero). From now on assume that n is sufficiently large so
that µnpCq ą 0. Let pn be a periodic point associated to µn such that pn P C.

Proof of Lemma 4.12. Observe that

F pCq ´
k´1ÿ

s“1

F pCsq “ lim
nÑ8

˜
µnpCq ´

k´1ÿ

s“1

µnpCsq
¸

“ lim
nÑ8

µn

˜
ď

sěk

Cs

¸
,

therefore Lemma 4.12 is equivalent to prove that limkÑ8 limnÑ8 µnpŤ
sěk Csq “ 0.

We will argue by contradiction and assume that

lim
kÑ8

lim
nÑ8

µn

˜
ď

sěk

Cs

¸
“ A ą 0.

Observe that
`
limnÑ8 µnpŤ

sěk Csq
˘
k
decreases as k goes to infinity. We obtain

that limnÑ8 µnpŤ
sěk Csq ě A, for every k P N.

Recall that C “ ra1, ..., ams and define the set Q Ă N by the following rule:
q P Q if and only if amq is an admissible word. Define a function p : Q Ñ Z as
follows: ppiq “ k if there exists an admissible word starting at i and ending at a1
of length k ` 1, but there is not any such word of length less or equal to k. The
map p is proper, in other words, p´1pra, bsq is finite for every a, b P R. Indeed,
assume by contradiction that p´1pra, bsq is infinite, this would imply that p´1pcq
is infinite for some c P N. For each w P p´1pcq we have an admissible word of
length c ` 1 connecting w and a1, this will create an admissible word (with length
m` c` 1) of the form a1...amw...a1. This contradicts the fact that pΣ, σq satisfies
the F´property. We conclude that p : Q Ñ Z is proper.
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Choose k0 P N such that ppsq ě t 4
A u `1, for every s P Q satisfying s ě k0. Recall

that pn is a periodic point associated to the measure µn. We denote the minimal
period of pn by m ` tn, and let ra1...amb1...btns be a neighborhood of pn. By the
definition of µn we know that µnpCsq is approximately the number of times that
the word a1...ams appears in wn :“ a1...amb1...btna1...am, divided by m ` tn. If
s ě k0, then each block a1...ams appearing in wn is contained in a longer block
of the form a1...amsr1...rB, where B ě t 4

A u ` 1, and rt ‰ a1, for all t P t1, ..., Bu.
In particular, for s ě k0, each block of the form a1...ams generates B letters that
do not contribute to the number of blocks a1...am in wn. Choose n0 such that
µnpŤ

sěk0
Csq ě A

2 , for every n ě n0. This implies that the number of blocks of
the form a1...ams, where s ě k0, in wn is at least pm`tnqA{2. As explained above,
each of those blocks generate a disjoint block of length pm ` B ` 1q. The number
of letters used in those disjoint blocks add up to pm`B ` 1qpm` tnqA{2. Observe
that pm ` B ` 1qA{2 ą 1, which contradicts that the total number of letters is
pm ` tnq. We conclude that A “ 0. !

We will now use Kolmogorov’s extension theorem to prove that F comes from a
measure on Σ. To each In :“ t1, ..., nu Ă N we associate a measure on NIn : this is
the atomic measure νn that assigns to rm1, ...,mns the number F prm1, ...,mnsq. We
remark that if m1...mn is not an admissible word of Σ, then F prm1, ...,mnsq “ 0.
In order to use Kolmogorov’s extension theorem and obtain a measure on NN we
need to verify the consistency of the family pνnqn, in other words, that

νnppm1, ...,mnqq “ νn`1ppm1, ...,mnq ˆ Nq.
By definition of the family pνnqn this is equivalent to the formula

F pDq “
ÿ

kě1

F pDkq,

for D “ rm1, ...,mns. Lemma 4.12 implies the consistency of pνnqn. It follows from
Kolmogorov’s extension theorem that F extends to a measure µ on the full shift
NN. Observe that by definition of F the measure µ is supported on Σ Ă NN. The
invariance of µ follows from Lemma 4.1. !

Remark 4.13 (Limits are not always measures). We now exhibit examples of count-
able Markov shifts that do not satisfy the F´property for which sequences of mea-
sures converge to a function F that can not be extended to a measure. Let Σ “ NN

be the full shift. Consider the periodic point pn “ 1n, and denote by µn the periodic
measure associated to pn. Observe that pµnqn converges to F P LpΣq, where F is
given by F pr1sq “ 1{2, and F pCq “ 0, for any other cylinder C Ĺ Σ. In this case it is
clear that F does not come from a measure: use the decomposition r1s “ Ť

sě1r1ss,
and the definition of F . Equivalently, the formula F pr1sq “ ř

sě1 F pr1ssq, does not
hold. In the full shift we can not expect to always have a measure as the limit of
probability measures (in the topology of convergence on cylinders). Similar exam-
ples are easy to construct. For instance consider the countable Markov shift defined
by the matrix M “ pMijq, where M1k “ 1 “ Mk1, for all k P N, and Mij “ 0 for
the remaining entries. In this case the same choice of measures pµnqn would provide
a sequence of invariant probability measures that do not converge to a countably
additive measure.
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Proposition 4.14. Let pΣ, σq be a transitive countable Markov shift satisfying
the F´property. Then any sequence of invariant probability measures pµnqn has a
subsequence that converges on cylinders to an invariant sub-probability measure.

Proof. Since MpΣ, σq Ă LpΣq, by compactness of LpΣq there exists a subsequence
pµnkqk converging to a function F P LpΣq. Since the periodic measures are dense
in MpΣ, σq (see Remark 4.2) we can find a sequence of periodic measures pνkqk
such that dpµnk , νkq ď 1

k . It follows that limkÑ8 dpνk, F q “ 0. We can now use
Proposition 4.11 and conclude that F corresponds to an invariant sub-probability
measure. !

Remark 4.15. The proof of Proposition 4.14 also implies thatMpΣ, σq Ă Mď1pΣ, σq.
Indeed, if F P MpΣ, σq, then we have a sequence of invariant probability measures
pµnqn converging to F . As in the proof of Proposition 4.14 we conclude that F can
be approximated by periodic measures, and therefore Proposition 4.11 implies the
result.

As mentioned in the introduction, to prove that Mď1pΣ, σq is affine homeomor-
phic to the Poulsen simplex we need to prove the existence of a sequence of invariant
measures that converges on cylinders to the zero measure. In our next result we
obtain such property. We emphasize that if pΣ, σq does not satisfy the F´property,
then this is not necessarily true (see Example 4.17).

Lemma 4.16. Let pΣ, σq be a transitive countable Markov shift satisfying the
F´property. Then there exists a sequence of invariant probability measures con-
verging on cylinders to the zero measure.

Proof. Fix some natural number k. We say that Property pkq holds if there exist
arbitrarily long admissible words of the form a1...am, where ta1, amu Ă t1, ..., ku,
and ai ě k ` 1, for all i P t2, ...,m ´ 1u. If Property pkq holds we can construct a

sequence of periodic measures pµpkq
n qn such that limnÑ8 µpkq

n pŤk
s“1rssq “ 0. First

observe that there exists M0 “ M0pkq such that every two letters in t1, ..., ku
can be connected with an admissible word of length less or equal to M0. By

hypothesis for every n P N there exists an admissible word wn “ apnq
1 ...apnq

mn , where

tapnq
1 , apnq

mnu Ăt 1, ..., ku, and apnq
i ě k`1, for all i P t2, ...,mn´1u, and mn ě n. We

can extend the word wn into an admissible word w1
n “ apnq

1 ...apnq
mnb

pnq
1 ...bpnq

sn apnq
1 ,

where sn ď M0. The word w1
n can be used to define a periodic orbit, and therefore

a periodic measure, say µpkq
n , on Σ. Observe that

µpkq
n

˜
kď

s“1

rss
¸

ď sn ` 2

sn ` mn
ď M0 ` 2

n
,

which readily implies that limnÑ8 µpkq
n pŤk

s“1rssq “ 0.
We will now verify that under the hypothesis of Lemma 4.16 Property pkq holds.

Assume by contradiction that this is not possible, in other words that any such
word has length less or equal to N0. Define

T : tn P N : n ě k ` 1u Ñ N,

in the following way: T pnq “ r, if there exists an admissible word of length r with
first letter in t1, ..., ku and ending at n, but there is no such admissible word of
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length strictly less to r. Similarly define

S : tn P N : n ě k ` 1u Ñ N,

in the following way: Spnq “ r, if there exists an admissible word of length r ` 1
with first letter n and ending at some letter in t1, ..., ku, but there is not such
admissible word of length less or equal to r. By definition of T and S we know that

given n ě k ` 1, there exists an admissible word yn :“ cpnq
1 ...cpnq

Tpnq´1nd
pnq
1 ...dpnq

Spnq,

where tcpnq
1 , dpnq

Spnqu Ăt 1, ..., ku and the rest of the letters are strictly larger than k.

Observe that by assumption we have T pnq ` Spnq ď N0, for every n ě k ` 1. For
n ě k ` 1 define W pnq as the biggest letter in the word yn. We can inductively
choose a sequence pntqt such that W pntq ă nt`1, and observe that pyntqt are
pairwise distinct. As with the words pwnqn, we can extend each yn to an admissible

word y1
n :“ epnq

1 ...epnq
sn ynf

pnq
1 ...f pnq

rn , where sn and rn are less than M0, and epnq
1 “

1 “ f pnq
rn . The word y1

n defines a periodic point of period ď 2M0 ` N0. Since
pyntqt are pairwise distinct we found infinitely many periodic points of periods less
or equal to 2M0 ` N0 (starting and ending at 1), which contradicts that pΣ, σq
satisfies the F´property. We conclude that Property pkq holds for every k P N.

For every k P N we obtain a sequence of periodic measures pµpkq
n qn such that

limnÑ8 µpkq
n pŤk

s“1rssq “ 0. Let nk be such that µpkq
nk pŤk

s“1rssq ď 1
k . To simplify

notation we define νk :“ µpkq
nk . We claim that pνkqk converges on cylinders to the

zero measure. Observe that for k ě m, we have

νkprmsq ď νk

˜
mď

s“1

rss
¸

ď νk

˜
kď

s“1

rss
¸

ď 1

k
.

We conclude that limkÑ8 νkprmsq “ 0. Since m P N was arbitrary we conclude
that pνkqk converges on cylinders to the zero measure. !

Example 4.17. We exhibit an example of a countable Markov shift of infinite en-
tropy not satisfying the F´property, for which there is no sequence of measures
converging to zero in the cylinder topology. Let pΣ, σq be the countable Markov
shift defined by the graph formed by infinitely many loops of length two rooted
at a common vertex. That is, the allowed transitions are of the form 1 Ñ N and
N Ñ 1 for every N P N, this example was also considered in Remark 4.13. The
system has infinite entropy, since it has infinitely many periodic orbits of period
two intersecting r1s. The frequency of the digit 1 is at least 1{2 for every element
of Σ. Therefore, if µ is an ergodic measure then µpr1sq ě 1{2. Thus, for any se-
quence of invariant measures pµnqn we must have that lim infnÑ8 µnpr1sq ě 1{2. In
particular, the sequence pµnqn does not converges to zero in the cylinder topology.

We can now prove the compactness of the space of sub-probability measures. As
explained in the introduction a compactification of the space of invariant probability
measures is important for applications (for instance see [ITV] and [V]).

Theorem 4.18. If pΣ, σq is a transitive countable Markov shift satisfying the
F´property. Then the space Mď1pΣ, σq is compact with respect the topology of
convergence on cylinders.
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Proof. It is a consequence of Remark 4.15 that MpΣ, σq Ă Mď1pΣ, σq. It is enough
to prove that MpΣ, σq “ Mď1pΣ, σq. Let pµnqn be a sequence of invariant prob-
ability measures converging on cylinders to the zero measure (see Lemma 4.16).
An element in Mď1pΣ, σq has the form λµ, where µ is an invariant probability
measure and λ P r0, 1s. Define νn “ λµ ` p1 ´ λqµn. Observe that pνnqn conver-
gences on cyliders to λµ. This concludes that MpΣ, σq “ Mď1pΣ, σq, and therefore
Mď1pΣ, σq is compact. !

The idea behind Remark 4.13 can be used to prove that Theorem 4.18 is sharp.
We will prove that without the F´property it is possible to construct a sequence
of invariant measures that converges on cylinders to a finitely additive measure
that is not countably additive. In particular, Theorem 4.18 is false without the
F´property assumption.

Proposition 4.19. Suppose that pΣ, σq does not satisfy the F´property. Then
there exists a sequence of periodic measures that converges on cylinders to F P LpΣq,
where F can not be extended to a measures.

Proof. Since pΣ, σq does not satisfy the F´property there exists a symbol i and
natural number n such that there are infinitely many admissible words of length n
that start and end at i. The set of admissible words of length k ` 1 starting and
ending at i, where the symbol i only appears at the beginning and at the end of
the word is denoted by Ak. By hypothesis there exists q ď n such that |Aq| “ 8.
Set Aq “ twk : k P Nu. Observe that each wk P Aq defines a periodic measure that
we denote by µk. Maybe after passing to a subsequence we can assume that pµkqk
converges on cylinders to F P LpΣq. By construction we know that µkprisq “ 1

q .

Observe that µkprirsq is equal to 0 or 1
q , for every k and r. If limkÑ8 µkprirsq “ 0,

for every r, then F can not come from a measure:
ř

rě1 F prirsq “ 0, but F prisq “ 1
q .

We assume there exists r1 such that limkÑ8 µkprir1sq “ 1
q , which is equivalent to

say that µkprir1sq “ 1
q , for every k sufficiently large. We can repeat the process

and conclude that if limkÑ8 µkprir1ssq “ 0, for every s, then F does not come from
a measure. We can assume that there exists r2 such that µkprir1r2sq “ 1

q , for k
sufficiently large. By repeating this process we obtain that F does not come from
a measure or that µkprir1...rq´1sq “ 1

q , for k sufficiently large. This last condition

is equivalent to say that the sequence pµkqk stabilizes, which contradicts that the
measures are pairwise different.

!
In Section 6 we will be interested in countable Markov shifts that do not nec-

essarily have the F´property. Despite of Proposition 4.19 we can regain control
by imposing an integrability condition on the sequence of probability measures
(see Proposition 6.12). This integrability condition will rule out the sequence con-
structed in Proposition 4.19.

5. The Poulsen simplex

We now prove one of our main results, in which we characterize the spaces
Mď1pΣ, σq and MpΣ, σq for countable Markov shifts satisfying the F´property.

Theorem 5.1. Let pΣ, σq be a transitive countable Markov shift satisfying the
F´property. Then Mď1pΣ, σq is affine homeomorphic to the Poulsen simplex.
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Proof. An element in Mď1pΣ, σq has the form λµ, where µ is an invariant prob-
ability measure and λ P r0, 1s. To prove that Mď1pΣ, σq is the Poulsen simplex
it is enough to prove that the extreme points of Mď1pΣ, σq are dense (we already
know that Mď1pΣ, σq is a metrizable convex compact Choquet simplex). We will
approximate the measure λµ with periodic measures. As explained in the proof
of Theorem 4.18, we can construct invariant probability measures pνnqn such that
limnÑ8 dpνn, λµq “ 0. By Remark 4.2 we can find a sequence pνnqn of periodic
measures such that dpνn, νnq ď 1

n . This implies that pνnqn converges on cylinders to
λµ, and therefore, by the main result of [LOS], Mď1pΣ, σq is affine homeomorphic
to the Poulsen simplex. !

Since the extreme points of Mď1pΣ, σq are the ergodic probability measures
together with the zero measures, it follows directly from Theorem 5.1 and Lemma
3.17 that,

Theorem 5.2. Let pΣ, σq be a transitive countable Markov shift satisfying the
F´property. Then MpΣ, σq is affinely homeomorphic to the Poulsen simplex minus
a vertex and all of its convex combinations.

Corollary 5.3. Let pΣ, σq be a transitive countable Markov shift satisfying the
F´property. Then the set MepΣ, σq is path connected.

Proof. The set of extreme points of the Poulsen simplex is path connected [LOS,
(4) p.101]. It follows from Theorem 5.1 that the set MepΣ, σq Y t0mu, where 0m
denotes the zero measure is path connected. Denote by Q :“ r´1, 1sN the Hilbert
cube and let P :“ tpx1, x2, . . . q P Q : |xn| ă 1, for every n P Nu. It was proved in
[LOS, Theorem 3.1] that there exists a homeomorphism h between the Hilbert cube
Q and the Poulsen simplex which maps P onto the set of extreme points of the
Poulsen simplex. Note that P is homeomorphic to l2. Denote by z “ h´1p0mq P P .
For any x, y P P ! tzu it is clear that there exists a continuous path p : r0, 1s Ñ P
such that pp0q “ x, pp1q “ y and pptq ‰ z for every t P r0, 1s. Therefore the set
MepΣ, σq is path connected. !

6. The space of invariant measures for suspension flows

In this section we study the space of invariant probability measures of a suspen-
sion flow defined over a countable Markov shift.

6.1. Suspension flows. Let pΣ, σq be a countable Markov shift and τ : Σ Ñ R
a continuous function bounded away from zero, that is, there exists c “ cpτq ą 0
such that τpxq ě c, for all x P Σ. Consider the space

Y “ tpx, tq P Σ ˆ R : 0 ď t ď τpxqu ,
with the points px, τpxqq and pσpxq, 0q identified for each x P Σ. The suspension
flow over σ with roof function τ is the semi-flow Θ “ pθtqtě0 on Y defined by

θtpx, sq “ px, s ` tq, whenever s ` t P r0, τpxqs.
In particular, θτpxqpx, 0q “ pσpxq, 0q. The space of invariant probability measures
for the shift is related to the space of invariant probability measures for the flow,
that we denote by MpΣ, σ, τq. Indeed, it follows from a classical result of Ambrose
and Kakutani [AK] that,
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Lemma 6.1. Let pY,Θq be a suspension flow over pΣ, σq with roof function τ
bounded away from zero. Let

Mτ :“
"
µ P MpΣ, σq :

ż
τdµ ă 8

*
.

The map ϕ : Mτ Ñ MpΣ, σ, τq defined by

µ ÞÑ µ ˆ Lebş
τdµ

,

where Leb is the one dimensional Lebesgue measure, is a bijection.

We denote the inverse of ϕ by ψ. We will be particularly interested in a special
class of roof functions.

Definition 6.2. A function τ : Σ Ñ R belongs to the class R if the following
properties hold:

(a) τ is uniformly continuous, bounded away from zero, and var2pτq is finite,
(b)

lim
kÑ8

inf
x:x1ěk

τpxq “ 8,

where x1 is the first coordinate of x.

Remark 6.3. The class R includes a wealth of interesting examples. For instance,
the geodesic flow over the modular surface can be coded as a suspension flow over
the full-shift on a countable alphabet, Σ “ NN, with a roof function τ belonging to
R, see [GK, KU] for details. A large class of examples belonging to the class R is
to be found in one-dimensional dynamics. Indeed, the class of Expanding-Markov-
Renyi (EMR) maps is a class of interval maps with infinitely many branches which
was introduced by Pollicott and Weiss in [PW] and has been extensively studied. It
turns out that if f is an EMR map then the symbolic version of the corresponding
geometric potential log |f 1| belongs to R. These potentials carry the relevant fractal
information of the system as well as the coding of relevant equilibrium measures
such as Sinai-Ruelle-Bowen measures. An example of an EMR map is the Gauss
map.

6.2. The topology of convergence on cylinders. The space of invariant sub-
probability measures of the suspension flow is denoted by Mď1pΣ, σ, τq. In this
section we endow this space with a topology that makes it compact whenever τ P R
(see Theorem 6.16). The topology we consider is an adaptation of the cylinder
topology defined in sub-section 3.3. Let pY,Θq be a suspension flow over pΣ, σq
with roof function τ and c “ cpτq ą 0 such that inf τ ą c.

Definition 6.4. Let pνnqn and ν be measures in Mď1pΣ, σ, τq. We say that pνnqn
converges on cylinders to ν if

lim
nÑ8

νnpC ˆ r0, csq “ νpC ˆ r0, csq,
for every cylinder C Ă Σ.

Recall that by Kac’s formula we know that

νpC ˆ r0, csq “ µpCqş
τdµ

,

whenever ν P MpΣ, σ, τq and µ “ ψpνq.
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Remark 6.5. Let ν and pνnqn be invariant probability measures for the suspension
flow and set µn “ ψpνnq, and µ “ ψpνq. From the definition of ψ we have that the
following statements are equivalent

(a) The sequence pνnqn converges on cylinders to λν, where λ P r0, 1s.
(b) The following limit holds

lim
nÑ8

µnpCqş
τdµn

“ λ
µpCqş
τdµ

,

for every cylinder C Ă Σ.

Moreover, λ1ν1 and λ2ν2 are equal if and only if

λ1ν1pC ˆ ra, bsq “ λ2ν2pC ˆ ra, bsq,
for every cylinder C Ă Σ and a, b P R. By Kac’s formula this is equivalent to

λ1
µ1pCqş
τdµ1

“ λ2
µ2pCqş
τdµ2

,

for every cylinder C Ă Σ.

Lemma 6.6. The topology of the convergence on cylinders in Mď1pΣ, σ, τq is
metrizable.

Proof. Let ρ : Mď1pΣ, σ, τq ˆ Mď1pΣ, σ, τq Ñ R, be defined by

ρpν1, ν2q “
ÿ

kě1

1

2k
|ν1pCi ˆ r0, csq ´ ν2pCi ˆ r0, csq| ,

where pCiqi is some enumeration of the cylinders of Σ and c “ cpτq. The map ρ is
a metric. Indeed, let ν1 “ λ1ϕpµ1q and ν2 “ λ2ϕpµ2q be in Mď1pΣ, σ, τq, where λ1

and λ2 are in r0, 1s. Suppose that ρpν1, ν2q “ 0. By Remark 6.5 we know that

λ1
µ1pCqş
τdµ1

“ λ2
µ2pCqş
τdµ2

,

for every cylinder C Ă Σ. If λ1 “ 0 we necessarily have λ2 “ 0: in this case ν1 and
ν2 are both the zero measure. Assume that λ1 ‰ 0, then

µ1pCq “ λ2

λ1

ş
τdµ1ş
τdµ2

µ2pCq,

for every cylinder C Ă Σ. By the outer regularity of Borel measures on a metric

space we conclude that µ1 “ Aµ2, where A “ λ2
λ1

ş
τdµ1ş
τdµ2

. This immediately implies

that λ1
µ1ş
τdµ1

“ λ2
µ2ş
τdµ2

, and therefore ν1 “ ν2. The other properties of a metric

are easily verified. Note that pνnqn converges on cylinders to ν if and only if
limnÑ8 ρpνn, νq “ 0, that is, the topology of convergence on cylinders is metrizable.

!
Our next result should be compared with Lemma 3.17. It says that the topology

of convergence on cylinders coincides with the weak* topology on MpΣ, σ, τq. We
emphasize that this result holds for every τ which is bounded below.

Lemma 6.7. Let ν and pνnqn be measures in MpΣ, σ, τq. The following assertions
are equivalent

(a) The sequence pνnqn converges in the weak* topology to ν.
(b) The sequence pνnqn converges on cylinders to ν.
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Proof. Let C Ă Σ be a cylinder. Observe that BpC ˆ r0, csq “ C ˆ t0, cu. Since ν is
a flow invariant probability measure we know that νpC ˆ txuq “ 0, for each x P R.
We conclude that νpBpC ˆ r0, csqq “ 0. Finally use Proposition 3.3(d) to conclude
that (a) implies (b).

We will now prove that (b) implies (a). A base for the topology in Y is given by

Ω :“ tC ˆ pa, bq Ă Y : C cylinder for Σ and a, b P Q with a ă bu.
It follows from the flow invariance of the measures that for every set C ˆ pa, bq Ă Y
we have

lim
nÑ8

νnpC ˆ pa, bqq “ νpC ˆ pa, bqq.
Observe that a finite intersection of elements in Ω is still in Ω. Note that each
open set O Ă Y can be written as a countable union of elements in Ω, say O “Ť

kě1pCk ˆ pak, bkqq. The result now follows from [Bi, Theorem 2.2]. !

One of the main properties of the class R is that we can rule out the escape
of mass by imposing a uniform bound on the integral of τ (see Lemma 6.8). This
illustrates the importance of part (b) in Definition 6.2.

Lemma 6.8. Let pµnqn Ă MpΣ, σq and µ P Mď1pΣ, σq be such that pµnqn con-
verges on cylinders to the measure µ. Let τ P R and assume there exists M P R
such that

ş
τdµn ď M , for every n P N. Then µ is a probability measure. Moreover,

pµnqn converges to µ in the weak* topology.

Proof. Observe that for every k P N we have
ˆ

inf
x:x0ěk

τpxq
˙
µn

˜
ď

sěk

rss
¸

ď
ż
τdµn ď M,

then

µn

˜
ď

sěk

rss
¸

ď M

infx:x0ěk τpxq .

This is equivalent to µn

` Ť
săkrss

˘
ě 1 ´ M

infx:x0ěk τpxq . By definition of the conver-

gence on cylinders we have

µ

˜
ď

săk

rss
¸

“ lim
nÑ8

µn

˜
ď

săk

rss
¸

ě 1 ´ M

infx:x0ěk τpxq .

Since τ P R we can conclude that limkÑ8 µ
` Ť

săkrss
˘

“ 1, and therefore µ is a
probability measure. Since the sequence pµnqn converges on cylinders to a proba-
bility measure we conclude that pµnqn converges in the weak* topology (see Lemma
3.17). !

Our next two lemmas completely describe the topology of convergence on cylin-
ders in terms of convergence of measures in Σ.

Lemma 6.9. Let τ P R. A sequence pνnqn Ă MpΣ, σ, τq converges on cylinders to
the zero measure if and only if

lim
nÑ8

ż
τdψpνnq “ 8.
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Proof. To simplify notation define µn “ ψpνnq. We will first prove that

lim
nÑ8

ż
τdµn “ 8, (6.1)

implies that pνnqn converges on cylinders to the zero measure. Note that equation
(6.1) implies that

lim
nÑ8

µnpCqş
τdµn

“ 0,

for every cylinder C. In virtue of Remark 6.5 we get that pνnqn converges on cylin-
ders to the zero measure. To prove the other implication we argue by contradiction:
suppose that the sequence pνnqn converges to the zero measure and that there exists
a subsequence pnkqk such that

ş
τdµnk ď M , for some M P R. From Remark 6.5

we obtain

0 “ lim
kÑ8

µnkpCqş
τdµnk

ě 1

M
lim sup
kÑ8

µnkpCq.

In particular, pµnkqk converges on cylinders to the zero measure. Lemma 6.8 implies
that limkÑ8

ş
τdµnk “ 8, which contradicts the choice of the sequence pnkqk. !

Lemma 6.10. Let τ P R and pνnqn, ν invariant probability measures for the sus-
pension flow. Define µn “ ψpνnq and µ “ ψpνq. Then the following are equivalent:

(a) The sequence pνnqn converges on cylinders to λν, where ν P MpΣ, σ, τq and
λ P p0, 1s.

(b) The sequence pµnqn converges to µ in the weak* topology and

lim
nÑ8

ş
τdµş
τdµn

“ λ P p0, 1s.

Proof. We first prove that (b) implies (a). If pµnqn converges in the weak* topol-
ogy to µ, then limnÑ8 µnpCq “ µpCq, for every cylinder C. It follows from the
hypothesis on λ that

lim
nÑ8

µnpCqş
τdµn

“ λ
µpCqş
τdµ

.

Remark 6.5 implies that pνnqn converges on cylinders to λν.
Now suppose that pνnqn converges on cylinders to λν. It follows from Lemma

6.9 and the assumption that λ ą 0 that pş
τdµnqn is a bounded sequence. After

passing to a subsequence we can assume that pş
τdµnqn is convergent. Let L P R

be such that limnÑ8
ş
τdµn “ L. Remark 6.5 implies that

lim
nÑ8

µnpCq “ λLş
τdµ

µpCq,

for every cylinder C. We conclude that pµnqn converges on cylinders to µ0 :“ λLş
τdµ

µ.

Observe that for sufficiently large n we have
ş
τdµn ď pL ` 1q. Lemma 6.8 implies

that µ0 is a probability measure and that pµnqn converges in the weak* topology
for µ0. Since µ is a probability measure we conclude that λL “ ş

τdµ, and therefore
µ0 “ µ. This argument shows that every subsequence of our initial sequence pµnqn
has a sub-subsequence converging to µ. This readily implies that the whole sequence

converges to µ, and that limnÑ8
ş
τdµş
τdµn

“ λ. !
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Our next result should be compared with Lemma 4.16. As mentioned in the
introduction, this is a necessary ingredient to prove thatMď1pΣ, σ, τq is the Poulsen
simplex.

Lemma 6.11. If τ P R then there exists a sequence of periodic measures pνnqn Ă
MpΣ, σ, τq that converges on cylinders to the zero measure.

Proof. We will separate our analysis into two cases.
Case 1 (assume pΣ, σq satisfies the F´property): By Lemma 4.16 there exists

a sequence of periodic measures pµnqn which converges on cylinders to the zero
measure. Observe that every periodic measure belong to Mτ , in particular ϕpµnq P
MpΣ, σ, τq. Now, by Lemma 6.8 we conclude that limnÑ8

ş
τdµn “ 8. It follows

from Lemma 6.9 that the sequence pϕpµnqqn converges to the zero measure.
Case 2 (assume pΣ, σq does not satisfies the F´property): In this case there

exists an element a in the alphabet, l P N, and a sequence ppnqn of distinct periodic
points of length l such that pn P ras. The periodic measure associated to pn is
denoted by ηn. Since τ P R, for N P R there exists nN such that for n ě nN we
have Slτppnq ą N . Here Slτ is the Birkhoff sum of τ of length l. In particularş
τdηn “ 1

l Slτppnq ě N{l. This implies that limnÑ8
ş
τdηn “ 8. The result then

follows from Lemma 6.9. !

Recall that the set LpΣq was introduced in Definition 4.4. We will now prove
a compactness result similar to Proposition 4.11. The proof of Proposition 6.12 is
significantly simpler than the one of Proposition 4.11; it would be interesting if this
result can be generalized to a larger class of potentials.

Proposition 6.12. Assume that τ P R. Let pµnqn be a sequence of periodic mea-
sures on Σ. Suppose that pµnqn converges on cylinders to F P LpΣq, and that there
exists M P R such that

ş
τdµn ď M , for all n P N. Then F extends to an invariant

probability measure.

Proof. We will follow the strategy of the proof of Proposition 4.11. It is enough to
prove that

lim
kÑ8

lim
nÑ8

µn

˜
ď

sěk

Cs

¸
“ 0,

where C “ ra0...am´1s is a cylinder. Let pn P Σ be a periodic point of period rn
and µn be the periodic measure of associated to the point pn. It is important to
observe that

µn

˜
ď

sěk

rss
¸

ě µn

˜
ď

sěk

Cs

¸
. (6.2)

Indeed, the probability measure µn is equidistributed on the set

tpn, σppnq, ..., σrn´1ppnqu.
Observe that σkppnq P Cs, implies that σk`mppnq P rss, from where inequality (6.2)
follows. Since

ş
τdµn ď M , we obtain that

µn

˜
ď

sěk

rss
¸

ď
ş
τdµn

infx:x1ěk τpxq ď M

infx:x1ěk τpxq ,
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but this immediately implies that

lim
kÑ8

lim
nÑ8

µn

˜
ď

sěk

rss
¸

ď lim sup
kÑ8

M

infx:x1ěk τpxq .

Since τ P R we obtain that the right hand side in the last inequality is zero. Finally
use inequality (6.2) to conclude that

lim
kÑ8

lim
nÑ8

µn

˜
ď

sěk

Cs

¸
“ 0.

As in the proof of Proposition 4.11 we have that F extends to a measure on Σ.
Lemma 6.8 implies that F is a probability measure. The invariance follows from
Lemma 4.1. !

Proposition 6.12 states that, assuming an integrability condition, limits of peri-
odic measures are invariant probability measures. It is then of particular importance
to know wether is possible to approximate a sequence of invariant measures pµnqn
by periodic measures such that the assumption supn

ş
τdµn ă 8 still remains true

for the sequence of periodic measures. Proposition 6.14 address this question. In
the proof of Proposition 6.14 we will need to approximate a measure in MpΣ, σq
by a convex combination of finitely many ergodic probability measures. This result
is classical in the compact case: the space of invariant probability measures is a
compact convex set, and therefore the result follows from the Krein-Milman theo-
rem. In lack of a good reference we provide a proof of this result that avoids the
Krein-Milman theorem.

Lemma 6.13. Let µ P MpΣ, σq and pfiqni“0 be real-valued functions in L1pµq.
Given ε ą 0, there exists µ1 P MpΣ, σq that is a convex combination of finitely
many ergodic probability measures which satisfies

ˇ̌
ˇ̌
ż
fidµ ´

ż
fidµ1

ˇ̌
ˇ̌ ă ε,

for every i P t0, ..., nu.

Proof. Let µ “ ş
µxdmpxq be the ergodic decomposition of µ, in particular,

ż
fkdµ “

ż ˆż
fkdµx

˙
dmpxq,

for k P t0, ..., nu. By ergodic decomposition, the measure µx is ergodic for µ-almost
every x P Σ. We choose a measurable set S Ă Σ such that µpSq “ 1 and µx is
ergodic for every x P S. Given x P S we define Fkpxq :“ ş

fkdµx. Observe thatş
fkdµ “ ş

S Fkdµ. By definition of the integral we know that

ż

S
Fkdµ “ inf

"ż

S
gdµ : g is simple and g ě Fk

*

“ sup

"ż

S
gdµ : g is simple and g ď Fk

*
.
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This immediately implies that there exists a measurable partition Uk “ tU pkq
1 , ..., U pkq

pk u
of S, such that

ż

S
Fkdµ ´ ε ă

pkÿ

i“1

˜
inf

xPUpkq
i

Fkpxq
¸
µpU pkq

i q

ď
pkÿ

i“1

¨

˝ sup
xPUpkq

i

Fkpxq
˛

‚µpU pkq
i q ă

ż

S
Fkdµ ` ε

If P and Q are partitions then P ^ Q denotes the common refinement of P and
Q. That is, A P P ^ Q if A “ P1 X Q1, where P1 P P and Q1 P Q. Consider the
partition U “ Źn

i“0 Ui of S, and write U “ tU1, ..., Uqu. Choose a point xi P Ui, for
every i P t1, ..., qu. Note that

ż

S
Fkdµ ´ ε ă

qÿ

i“1

FkpxiqµpUiq ă
ż

S
Fkdµ ` ε,

for every k P t0, ..., nu. We conclude that
ˇ̌
ˇ̌
ˇ

ż
fkdµ ´

qÿ

i“1

µpUiq
ż
fkdµxi

ˇ̌
ˇ̌
ˇ ă ε,

for every k P t0, ..., nu. Finally define µ1 “ řq
i“1 µpUiqµxi . !

We will now prove a refinement of Theorem 3.8. As mentioned before, this is an
important ingredient to increase the applicability of Proposition 6.12.

Proposition 6.14. Let τ be a uniformly continuous function such that var2pτq is
finite. For every µ P Mτ there exists a sequence of periodic measures pµnqn that
converges in the weak* topology to µ and such that limnÑ8

ş
τdµn “ ş

τdµ.

Proof. In virtue of Lemma 6.13 it is possible to find a sequence pµnqn of measures,
each a convex combination of finitely many ergodic probability measures, satisfying
dpµn, µq ď 1

n , and such that limnÑ8
ş
τdµn “ ş

τdµ. In particular, it is enough to
prove that the result holds for measures which are a finite convex combination of
ergodic measures. We can moreover assume that the weights in the convex combi-
nation are rational numbers. Thus, from now on we assume that µ “ 1

N

řN
j“1 µj ,

where each µj is ergodic.
Let F0 “ tf1, ..., flu Ă CbpΣq be a collection of bounded uniformly continuous

functions on Σ and define F :“ F0 Y tτu. By assumption each f P F is uniformly
continuous. In particular, given ε ą 0, there exists N0 “ N0pεq such that varnpfq ď
ε
4 , for every f P F and n ě N0. Define C0 :“ maxfPF0 maxxPΣ |fpxq|.

Choose M such that µjpKM q ą 9{10, for every j P t1, ..., Nu, where KM “ŤM
s“1rss. By transitivity of pΣ, σq there exists a number L such that every pair of

numbers in t1, ...,Mu2 can be connected with an admissible word of length at most
L. For each pair pa, bq P t1, ...,Mu2 we choose a point pa,b such that pa,b P ras and
σcpa,bq´1ppa,bq P rbs, where cpa, bq ď L. Recall that Snτpxq denotes the Birkhoff
sum of length n of the point x. Set C1 “ maxa,b |Scpa,bqτppa,bq|. Define

As
j,ε “

#
x P Σ :

ˇ̌
ˇ̌
ˇ
1

m

m´1ÿ

i“0

fpσixq ´
ż
fdµj

ˇ̌
ˇ̌
ˇ ă ε

4
, for every f P F and m ě s

+
.
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It follows from Birkhoff ergodic theorem that µjpAs
j,εq Ñ 1 as s Ñ 8. Choose

s0 P N such that µjpAs0
j,εq ě 9{10, for every j P t1, . . . , Nu. We assume that s0

is sufficiently large (relative to our constants C0, C1, N0 and L) to be determined
later.

Observe that µjpAs0
j,ε X KM X σ´s0pKM qq ą 1

2 . Pick a point xj P As0
j,ε X KM X

σ´s0pKM q. We will construct a periodic point x0 out of the sequence pxjqNj“1. Let
yj be the admissible word coming from the first ps0 `1q coordinates of xj . Observe
that the first and last letters of yj are in t1, ...,Mu. We construct an admissible
word of the form y “ y1w1y2w2...yNwN, where wi are admissible words of length
less or equal to L that connects yi with yi`1 (where we consider yN`1 “ y1).
We will moreover assume that the admissible word wi is the same one we used to
construct the point pa,b, for the corresponding a and b. In this case lpyiq “ cpa, bq
and the point associated to wi is denoted by pi P ppa,bqa,b. Then define x “ pyy...q.
We claim that the periodic measure associated to x, say µx, belongs to the set

Ω “
"
ν P MpΣ, σq :

ˇ̌
ˇ̌
ż
fdν ´

ż
fdµ

ˇ̌
ˇ̌ ă ε, for every f P F

*
.

Our construction ensures the following inequalities:

(a) |Ss0´N0fpxq ´ Ss0´N0fpx1q| ď ps0 ´ N0qvarN0f ď ps0 ´ N0qε{4, for every
f P F .

(b) |SN0`lpy1qfpσs0´N0xq ´SN0`lpy1qfpσs0´N0xq| ď 2pN0 ` lpy1qqC0 ď 2pN0 `
LqC0, for every f P F0.

(c) |SN0τpσs0´N0xq ´ SN0τpσs0´N0x1q| ď N0var2pτq.
(d) |Slpy1qτpσs0xq ´ Slpy1qτpp1q| ď lpy1qvar2pτq ď Lvar2pτq.

We can use the last inequality to obtain that

|Slpy1qτpσs0xq| ď Lvar2pτq ` C1.

Combining these inequalities we obtain that

|Ss0`lpy1qτpxq ´ Ss0τpx1q| ď 1

4
ps0 ´ N0qε ` N0var2pτq ` Lvar2pτq ` C1,

and that

|Ss0`lpy1qfpxq ´ Ss0`lpy1qfpx1q| ď 1

4
ps0 ´ N0qε ` 2pN0 ` LqC0,

where f P F0. Similar inequalities can be obtained when comparing the value of

our function f at σpk´1qs0`řk´1
i“1 lpyiqpxq and at xk, where f P F . Using the triangle

inequality and the definition of As0
j,ε we can estimate | ş

fdµx ´ řN
j“1

ş
fdµj |, in an

effective way. By taking s0 large enough (in terms of our constants C0, C1, N0

and L) we can ensure that µx P Ω. We leave the details to the reader. We have
now proved that the result holds for convex combinations of ergodic measures, and
as explained at the beginning of the proof, the general result follows from Lemma
6.13. !
Corollary 6.15. Assume that τ P R. Then the space of ergodic measuresMepΣ, σ, τq
is weak* dense in MpΣ, σ, τq.
Proof. Fix ν P MpΣ, σ, τq. We will prove that ν can be approximated in the
topology of convergence on cylinders by ergodic measures. Let µ “ ψpνq. By
Proposition 6.14 we can find a sequence of periodic measures pµnqn Ă MpΣ, σq
converging to µ in the weak* topology and such that limnÑ8

ş
τdµn “ ş

τdµ. Set
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νn “ ϕpµnq. Lemma 6.10 implies that pνnqn converges in the cylinder topology to
ν. In virtue of Lemma 6.7 we have that pνnqn converges in the weak* topology to
ν. Moreover, each νn is ergodic, since each µn is ergodic. This concludes the proof
of the corollary. !

We have finally all the ingredients to prove the main result of this section: the
compactness of Mď1pΣ, σ, τq. We already know that Mď1pΣ, σ, τq is a metrizable
topological space, it is enough to prove it is sequentially compact.

Theorem 6.16. Assume that τ P R. Let pνnqn be a sequence of invariant prob-
ability measures of the suspension flow. Then there exists a subsequence pνnkqk
converging on cylinders to an invariant sub-probability measure ν.

Proof. Let µn “ ψpνnq. If lim supnÑ8
ş
τdµn “ 8, there exists a subsequence of

pνnqn that converges on cylinders to the zero measure. We will assume that
ż
τdµn ď M,

for all n P N. By compactness of LpΣq there exists a subsequence pµnkqk that
converges on cylinders to F P LpΣq. Maybe after passing to a subsequence we can
assume that limkÑ8

ş
τdµnk “ L, for some L P R. We can now use Proposition 6.14

to obtain periodic measures ηk satisfying dpµnk , ηkq ď 1
k and

ş
τdηk ď pş

τdµnk `1q.
Note that limkÑ8 dpηk, F q “ 0 and

ş
τdηk ď pM `1q, for all k P N. We can now use

Proposition 6.12 to conclude that F extends to an invariant probability measure
that we denote by µ. It follows that pµnkqk converges on cylinders to µ and that
limkÑ8

ş
τdµnk “ L. Finally use Lemma 6.10 to obtain that pνnkqk converges on

cylinders to λν, where ν “ ϕpµq and λ “
ş
τdµ
L . !

6.3. The space of flow invariant sub-probability measures is the Poulsen
simplex. In Section 5 we proved that Mď1pΣ, σq is affine homeomorphic to the
Poulsen simplex if pΣ, σq has the F´property. In this section we prove an analogous
result for the suspension flow, that is, that Mď1pΣ, σ, τq is affine homeomorphic to
the Poulsen simplex, provided that τ P R.

Theorem 6.17. Let τ be a potential in R. The space Mď1pΣ, σ, τq endowed with
the topology of convergence on cylinders is affine homeomorphic to the Poulsen
simplex.

Proof. In Theorem 6.16 we proved that the space Mď1pΣ, σ, τq is compact with
respect to the cylinder topology. In Lemma 6.6 we showed that it is a metrizable
space. Since the space is also a convex Choquet simplex (from the ergodic decompo-
sition), it suffices to prove that the set of extreme points is dense. Note that every
element of Mď1pΣ, σ, τq is of the form λν, with λ P r0, 1s and ν P MpΣ, σ, τq. In
Lemma 6.11 we proved that there exists a sequence of flow invariant ergodic mea-
sures pν̃nqn converging to the zero measure. Set ν̂n :“ λν ` p1 ´ λqν̃n, and observe
that the sequence pν̂nqn converges on cylinders to λν. It follows from Corollary
6.15 that the ergodic measures are dense in MpΣ, σ, τq. This allows us to approx-
imate pν̂nqn by a sequence of ergodic measures that converges in cylinders to λν.
It follows from the main result of [LOS, Theorem 2.3] that Mď1pΣ, σ, τq is affine
homeomorphic to the Poulsen simplex. !

As in Section 5 we conclude that
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Theorem 6.18. Let pΣ, σq be a transitive countable Markov shift and τ P R. Then
MpΣ, σ, τq is affinely homeomorphic to the Poulsen simplex minus a vertex and all
of its convex combinations.

Proof. Note that the set of extreme points of Mď1pΣ, σ, τq is the zero measure
together with the set of ergodic measures in MpΣ, σ, τq. The result now follows
from Theorem 6.17 together with the relation between weak* and cylinder topology
(see Lemma 6.7). !
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